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Preface

Writing the Bitcoin Book
I (Andreas) first stumbled upon Bitcoin in mid-2011. My immediate reaction was
more or less “Pfft! Nerd money!” and I ignored it for another six months, failing
to grasp its importance. This is a reaction that I have seen repeated among many
of the smartest people I know, which gives me some consolation. The second time
I came across Bitcoin, in a mailing list discussion, I decided to read the whitepaper
written by Satoshi Nakamoto and see what it was all about. I still remember the
moment I finished reading those nine pages, when I realized that Bitcoin was not
simply a digital currency, but a network of trust that could also provide the basis
for so much more than just currencies. The realization that “this isn’t money, it’s a
decentralized trust network,” started me on a four-month journey to devour every
scrap of information about Bitcoin I could find. I became obsessed and enthralled,
spending 12 or more hours each day glued to a screen, reading, writing, coding, and
learning as much as I could. I emerged from this state of fugue, more than 20 pounds
lighter from lack of consistent meals, determined to dedicate myself to working on
Bitcoin.

Two years later, after creating a number of small startups to explore various Bitcoin-
related services and products, I decided that it was time to write my first book.
Bitcoin was the topic that had driven me into a frenzy of creativity and consumed my
thoughts; it was the most exciting technology I had encountered since the internet.
It was now time to share my passion about this amazing technology with a broader
audience.

Intended Audience
This book is mostly intended for coders. If you can use a programming language, this
book will teach you how cryptographic currencies work, how to use them, and how
to develop software that works with them. The first few chapters are also suitable as
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an in-depth introduction to Bitcoin for noncoders—those trying to understand the
inner workings of Bitcoin and cryptocurrencies.

Why Are There Bugs on the Cover?
The leafcutter ant is a species that exhibits highly complex behavior in a colony
super-organism, but each individual ant operates on a set of simple rules driven by
social interaction and the exchange of chemical scents (pheromones). Per Wikipedia:
“Next to humans, leafcutter ants form the largest and most complex animal societies
on Earth.” Leafcutter ants don’t actually eat leaves, but rather use them to farm a
fungus, which is the central food source for the colony. Get that? These ants are
farming!

Although ants form a caste-based society and have a queen for producing offspring,
there is no central authority or leader in an ant colony. The highly intelligent and
sophisticated behavior exhibited by a multimillion-member colony is an emergent
property from the interaction of the individuals in a social network.

Nature demonstrates that decentralized systems can be resilient and can produce
emergent complexity and incredible sophistication without the need for a central
authority, hierarchy, or complex parts.

Bitcoin is a highly sophisticated decentralized trust network that can support myriad
financial processes. Yet, each node in the Bitcoin network follows a few simple
rules. The interaction between many nodes is what leads to the emergence of the
sophisticated behavior, not any inherent complexity or trust in any single node. Like
an ant colony, the Bitcoin network is a resilient network of simple nodes following
simple rules that together can do amazing things without any central coordination.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.
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Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Code Examples
All the code snippets can be replicated on most operating systems with a minimal
installation of compilers and interpreters for the corresponding languages. Where
necessary, we provide basic installation instructions and step-by-step examples of the
output of those instructions.

Some of the code snippets and code output have been reformatted for print. In all
such cases, the lines have been split by a backslash (\) character, followed by a newline
character. When transcribing the examples, remove those two characters and join the
lines again and you should see identical results as shown in the example.

All the code snippets use real values and calculations where possible, so that you can
build from example to example and see the same results in any code you write to
calculate the same values.

Using Code Examples
This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
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and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Mastering Bitcoin, 3rd ed., by
Andreas M. Antonopoulos and David A. Harding (O’Reilly). Copyright 2024 David
Harding, ISBN 978-1-098-15009-9.”

Some editions of this book are offered under an open source license, such as CC-BY-
NC, in which case the terms of that license apply.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Changes Since the Previous Edition
A particular focus in the third edition has been modernizing the 2017 second edition
text and the remaining 2014 first edition text. In addition, many concepts that are
relevant to contempory Bitcoin development in 2023 have been added:

Chapter 4
We rearranged the address info so that we work through everything in historical
order, adding a new section with P2PK (where “address” was “IP address”),
refreshed the previous P2PKH and P2SH sections, and then added new sections
for segwit/bech32 and taproot/bech32m.

Old Chapters 6 and 7
Text from previous versions of Chapter 6, “Transactions,” and Chapter 7,
“Advanced Transactions,” has been rearranged and expanded across four new
chapters: Chapter 6, “Transactions” (the structure of transactions), Chapter 7,
“Authorization and Authentication”, Chapter 8, “Digital Signatures”, and Chap‐
ter 9, “Transaction Fees”.

Chapter 6
We added almost entirely new text describing the structure of a transaction.

Chapter 7
We added new text about MAST, P2C, scriptless multisignatures, taproot, and
tapscript.

Chapter 8
We revised the ECDSA text and added new text about schnorr signatures, multi‐
signatures, and threshold signatures.
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Chapter 9
We added almost entirely new text about fees, RBF and CPFP fee bumping,
transaction pinning, package relay, and CPFP carve-out.

Chapter 10
We added text about compact block relay, added a significant update to bloom
filters that better describes their privacy problems, and new text about compact
block filters.

Chapter 11
We added text about signet.

Chapter 12
We added text about BIP8 and speedy trial.

Appendixes
We removed library-specific appendixes. After the appendix containing the orig‐
inal whitepaper, we added a new appendix describing how the implementation
and properties of Bitcoin differ from those proposed in the whitepaper.

Bitcoin Addresses and Transactions in This Book
The Bitcoin addresses, transactions, keys, QR codes, and blockchain data used in
this book are, for the most part, real. That means you can browse the blockchain,
look at the transactions offered as examples, retrieve them with your own scripts or
programs, etc.

However, note that the private keys used to construct addresses are either printed
in this book or have been “burned.” That means if you send money to any of these
addresses, the money will either be lost forever, or in some cases everyone who can
read the book can take it using the private keys printed in here.

DO NOT SEND MONEY TO ANY OF THE ADDRESSES IN
THIS BOOK. Your money will be taken by another reader or lost
forever.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.
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Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/MasteringBitcoin3e.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Contacting the Authors
You can contact Andreas M. Antonopoulos on his personal site:
https://antonopoulos.com.

Follow Andreas on Facebook: https://facebook.com/AndreasMAntonopoulos.

Follow Andreas on Twitter: https://twitter.com/aantonop.

Follow Andreas on LinkedIn: https://linkedin.com/company/aantonop.

Many thanks to all of Andreas’s patrons who support his work through monthly
donations. You can follow his Patreon page here: https://patreon.com/aantonop.

Information about Mastering Bitcoin, as well as Andreas’s Open Edition and transla‐
tions, is available on https://bitcoinbook.info.

You can contact David A. Harding on his personal site: https://dtrt.org.
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CHAPTER 1

Introduction

Bitcoin is a collection of concepts and technologies that form the basis of a digital
money ecosystem. Units of currency called bitcoin are used to store and transmit
value among participants in the Bitcoin network. Bitcoin users communicate with
each other using the Bitcoin protocol primarily via the internet, although other
transport networks can also be used. The Bitcoin protocol stack, available as open
source software, can be run on a wide range of computing devices, including laptops
and smartphones, making the technology easily accessible.

In this book, the unit of currency is called “bitcoin” with a small b,
and the system is called “Bitcoin,” with a capital B.

Users can transfer bitcoin over the network to do just about anything that can
be done with conventional currencies, including buying and selling goods, sending
money to people or organizations, or extending credit. Bitcoin can be purchased,
sold, and exchanged for other currencies at specialized currency exchanges. Bitcoin
is arguably the perfect form of money for the internet because it is fast, secure, and
borderless.

Unlike traditional currencies, the bitcoin currency is entirely virtual. There are no
physical coins or even individual digital coins. The coins are implied in transactions
that transfer value from spender to receiver. Users of Bitcoin control keys that allow
them to prove ownership of bitcoin in the Bitcoin network. With these keys, they can
sign transactions to unlock the value and spend it by transferring it to a new owner.
Keys are often stored in a digital wallet on each user’s computer or smartphone.
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Possession of the key that can sign a transaction is the only prerequisite to spending
bitcoin, putting the control entirely in the hands of each user.

Bitcoin is a distributed, peer-to-peer system. As such, there is no central server or
point of control. Units of bitcoin are created through a process called “mining,” which
involves repeatedly performing a computational task that references a list of recent
Bitcoin transactions. Any participant in the Bitcoin network may operate as a miner,
using their computing devices to help secure transactions. Every 10 minutes, on
average, one Bitcoin miner can add security to past transactions and is rewarded with
both brand new bitcoins and the fees paid by recent transactions. Essentially, Bitcoin
mining decentralizes the currency-issuance and clearing functions of a central bank
and replaces the need for any central bank.

The Bitcoin protocol includes built-in algorithms that regulate the mining function
across the network. The difficulty of the computational task that miners must per‐
form is adjusted dynamically so that, on average, someone succeeds every 10 minutes
regardless of how many miners (and how much processing) are competing at any
moment. The protocol also periodically decreases the number of new bitcoins that
are created, limiting the total number of bitcoins that will ever be created to a
fixed total just below 21 million coins. The result is that the number of bitcoins in
circulation closely follows an easily predictable curve where half of the remaining
coins are added to circulation every four years. At approximately block 1,411,200,
which is expected to be produced around the year 2035, 99% of all bitcoins that will
ever exist will have been issued. Due to Bitcoin’s diminishing rate of issuance, over the
long term, the Bitcoin currency is deflationary. Furthermore, nobody can force you to
accept any bitcoins that were created beyond the expected issuance rate.

Behind the scenes, Bitcoin is also the name of the protocol, a peer-to-peer network,
and a distributed computing innovation. Bitcoin builds on decades of research in
cryptography and distributed systems and includes at least four key innovations
brought together in a unique and powerful combination. Bitcoin consists of:

• A decentralized peer-to-peer network (the Bitcoin protocol)•
• A public transaction journal (the blockchain)•
• A set of rules for independent transaction validation and currency issuance•

(consensus rules)
• A mechanism for reaching global decentralized consensus on the valid block‐•

chain (proof-of-work algorithm)

As a developer, I see Bitcoin as akin to the internet of money, a network for propagat‐
ing value and securing the ownership of digital assets via distributed computation.
There’s a lot more to Bitcoin than first meets the eye.
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In this chapter we’ll get started by explaining some of the main concepts and terms,
getting the necessary software, and using Bitcoin for simple transactions. In the
following chapters, we’ll start unwrapping the layers of technology that make Bitcoin
possible and examine the inner workings of the Bitcoin network and protocol.

Digital Currencies Before Bitcoin
The emergence of viable digital money is closely linked to developments in cryptog‐
raphy. This is not surprising when one considers the fundamental challenges involved
with using bits to represent value that can be exchanged for goods and services. Three
basic questions for anyone accepting digital money are:

• Can I trust that the money is authentic and not counterfeit?•
• Can I trust that the digital money can only be spent once (known as the “double-•

spend” problem)?
• Can I be sure that no one else can claim this money belongs to them and not me?•

Issuers of paper money are constantly battling the counterfeiting problem by using
increasingly sophisticated papers and printing technology. Physical money addresses
the double-spend issue easily because the same paper note cannot be in two places
at once. Of course, conventional money is also often stored and transmitted digitally.
In these cases, the counterfeiting and double-spend issues are handled by clearing all
electronic transactions through central authorities that have a global view of the cur‐
rency in circulation. For digital money, which cannot take advantage of esoteric inks
or holographic strips, cryptography provides the basis for trusting the legitimacy of a
user’s claim to value. Specifically, cryptographic digital signatures enable a user to sign
a digital asset or transaction proving the ownership of that asset. With the appropriate
architecture, digital signatures also can be used to address the double-spend issue.

When cryptography started becoming more broadly available and understood in
the late 1980s, many researchers began trying to use cryptography to build digital
currencies. These early digital currency projects issued digital money, usually backed
by a national currency or precious metal such as gold.

Although these earlier digital currencies worked, they were centralized and, as a
result, were easy to attack by governments and hackers. Early digital currencies
used a central clearinghouse to settle all transactions at regular intervals, just like a
traditional banking system. Unfortunately, in most cases these nascent digital curren‐
cies were targeted by worried governments and eventually litigated out of existence.
Some failed in spectacular crashes when the parent company liquidated abruptly. To
be robust against intervention by antagonists, whether legitimate governments or
criminal elements, a decentralized digital currency was needed to avoid a single point
of attack. Bitcoin is such a system, decentralized by design, and free of any central
authority or point of control that can be attacked or corrupted.
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1 “Bitcoin: A Peer-to-Peer Electronic Cash System”, Satoshi Nakamoto.

History of Bitcoin
Bitcoin was first described in 2008 with the publication of a paper titled “Bitcoin: A
Peer-to-Peer Electronic Cash System,”1 written under the alias of Satoshi Nakamoto
(see Appendix A). Nakamoto combined several prior inventions such as digital sig‐
natures and Hashcash to create a completely decentralized electronic cash system
that does not rely on a central authority for currency issuance or settlement and
validation of transactions. A key innovation was to use a distributed computation
system (called a “proof-of-work” algorithm) to conduct a global lottery every 10
minutes on average, allowing the decentralized network to arrive at consensus about
the state of transactions. This elegantly solves the issue of double-spend where a
single currency unit can be spent twice. Previously, the double-spend problem was a
weakness of digital currency and was addressed by clearing all transactions through a
central clearinghouse.

The Bitcoin network started in 2009, based on a reference implementation published
by Nakamoto and since revised by many other programmers. The number and power
of machines running the proof-of-work algorithm (mining) that provides security
and resilience for Bitcoin have increased exponentially, and their combined compu‐
tational power now exceeds the combined number of computing operations of the
world’s top supercomputers.

Satoshi Nakamoto withdrew from the public in April 2011, leaving the responsibil‐
ity of developing the code and network to a thriving group of volunteers. The
identity of the person or people behind Bitcoin is still unknown. However, neither
Satoshi Nakamoto nor anyone else exerts individual control over the Bitcoin system,
which operates based on fully transparent mathematical principles, open source code,
and consensus among participants. The invention itself is groundbreaking and has
already spawned new science in the fields of distributed computing, economics, and
econometrics.

A Solution to a Distributed Computing Problem
Satoshi Nakamoto’s invention is also a practical and novel solution to a problem
in distributed computing, known as the “Byzantine Generals’ Problem.” Briefly, the
problem consists of trying to get multiple participants without a leader to agree
on a course of action by exchanging information over an unreliable and potentially
compromised network. Satoshi Nakamoto’s solution, which uses the concept of proof
of work to achieve consensus without a central trusted authority, represents a break‐
through in distributed computing.
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Getting Started
Bitcoin is a protocol that can be accessed using an application that speaks the proto‐
col. A “Bitcoin wallet” is the most common user interface to the Bitcoin system, just
like a web browser is the most common user interface for the HTTP protocol. There
are many implementations and brands of Bitcoin wallets, just like there are many
brands of web browsers (e.g., Chrome, Safari, and Firefox). And just like we all have
our favorite browsers, Bitcoin wallets vary in quality, performance, security, privacy,
and reliability. There is also a reference implementation of the Bitcoin protocol
that includes a wallet, known as “Bitcoin Core,” which is derived from the original
implementation written by Satoshi Nakamoto.

Choosing a Bitcoin Wallet
Bitcoin wallets are one of the most actively developed applications in the Bitcoin
ecosystem. There is intense competition, and while a new wallet is probably being
developed right now, several wallets from last year are no longer actively maintained.
Many wallets focus on specific platforms or specific uses and some are more suitable
for beginners while others are filled with features for advanced users. Choosing a
wallet is highly subjective and depends on the use and user expertise. Therefore,
it would be pointless to recommend a specific brand or wallet. However, we can
categorize Bitcoin wallets according to their platform and function and provide some
clarity about all the different types of wallets that exist. It is worth trying out several
different wallets until you find one that fits your needs.

Types of Bitcoin wallets
Bitcoin wallets can be categorized as follows, according to the platform:

Desktop wallet
A desktop wallet was the first type of Bitcoin wallet created as a reference
implementation. Many users run desktop wallets for the features, autonomy, and
control they offer. Running on general-use operating systems such as Windows
and macOS has certain security disadvantages, however, as these platforms are
often insecure and poorly configured.

Mobile wallet
A mobile wallet is the most common type of Bitcoin wallet. Running on smart-
phone operating systems such as Apple iOS and Android, these wallets are
often a great choice for new users. Many are designed for simplicity and ease-of-
use, but there are also fully featured mobile wallets for power users. To avoid
downloading and storing large amounts of data, most mobile wallets retrieve
information from remote servers, reducing your privacy by disclosing to third
parties information about your Bitcoin addresses and balances.
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Web wallet
Web wallets are accessed through a web browser and store the user’s wallet on a
server owned by a third party. This is similar to webmail in that it relies entirely
on a third-party server. Some of these services operate using client-side code
running in the user’s browser, which keeps control of the Bitcoin keys in the
hands of the user, although the user’s dependence on the server still compromises
their privacy. Most, however, take control of the Bitcoin keys from users in
exchange for ease-of-use. It is inadvisable to store large amounts of bitcoin on
third-party systems.

Hardware signing devices
Hardware signing devices are devices that can store keys and sign transactions
using special-purpose hardware and firmware. They usually connect to a desk‐
top, mobile, or web wallet via USB cable, near-field-communication (NFC),
or a camera with QR codes. By handling all Bitcoin-related operations on the
specialized hardware, these wallets are less vulnerable to many types of attacks.
Hardware signing devices are sometimes called “hardware wallets”, but they need
to be paired with a full-featured wallet to send and receive transactions, and the
security and privacy offered by that paired wallet plays a critical role in how
much security and privacy the user obtains when using the hardware signing
device.

Full node versus Lightweight
Another way to categorize Bitcoin wallets is by their degree of autonomy and how
they interact with the Bitcoin network:

Full node
A full node is a program that validates the entire history of Bitcoin transactions
(every transaction by every user, ever). Optionally, full nodes can also store
previously validated transactions and serve data to other Bitcoin programs, either
on the same computer or over the internet. A full node uses substantial computer
resources—about the same as watching an hour-long streaming video for each
day of Bitcoin transactions—but the full node offers complete autonomy to its
users.

Lightweight client
A lightweight client, also known as a simplified-payment-verification (SPV) cli‐
ent, connects to a full node or other remote server for receiving and sending Bit‐
coin transaction information, but stores the user wallet locally, partially validates
the transactions it receives, and independently creates outgoing transactions.

Third-party API client
A third-party API client is one that interacts with Bitcoin through a third-party
system of APIs rather than by connecting to the Bitcoin network directly. The
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wallet may be stored by the user or by third-party servers, but the client trusts the
remote server to provide it with accurate information and protect its privacy.

Bitcoin is a peer-to-peer (P2P) network. Full nodes are the peers:
each peer individually validates every confirmed transaction and
can provide data to its user with complete authority. Lightweight
wallets and other software are clients: each client depends on one
or more peers to provide it with valid data. Bitcoin clients can
perform secondary validation on some of the data they receive and
make connections to multiple peers to reduce their dependence on
the integrity of a single peer, but the security of a client ultimately
relies on the integrity of its peers.

Who controls the keys
A very important additional consideration is who controls the keys. As we will see
in subsequent chapters, access to bitcoins is controlled by “private keys,” which are
like very long PINs. If you are the only one to have control over these private keys,
you are in control of your bitcoins. Conversely, if you do not have control, then
your bitcoins are managed by a third-party who ultimately controls your funds on
your behalf. Key management software falls into two important categories based
on control: wallets, where you control the keys, and the funds and accounts with
custodians where some third-party controls the keys. To emphasize this point, I
(Andreas) coined the phrase: Your keys, your coins. Not your keys, not your coins.

Combining these categorizations, many Bitcoin wallets fall into a few groups, with
the three most common being desktop full node (you control the keys), mobile
lightweight wallet (you control the keys), and web-based accounts with third parties
(you don’t control the keys). The lines between different categories are sometimes
blurry, as software runs on multiple platforms and can interact with the network in
different ways.

Quick Start
Alice is not a technical user and only recently heard about Bitcoin from her friend
Joe. While at a party, Joe is enthusiastically explaining Bitcoin to everyone around
him and is offering a demonstration. Intrigued, Alice asks how she can get started
with Bitcoin. Joe says that a mobile wallet is best for new users and he recommends a
few of his favorite wallets. Alice downloads one of Joe’s recommendations and installs
it on her phone.

When Alice runs her wallet application for the first time, she chooses the option
to create a new Bitcoin wallet. Because the wallet she has chosen is a noncustodial
wallet, Alice (and only Alice) will be in control of her keys. Therefore, she bears
responsibility for backing them up, since losing the keys means she loses access to
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her bitcoins. To facilitate this, her wallet produces a recovery code that can be used to
restore her wallet.

Recovery Codes
Most modern noncustodial Bitcoin wallets will provide a recovery code for their user
to back up. The recovery code usually consists of numbers, letters, or words selected
randomly by the software, and is used as the basis for the keys that are generated by
the wallet. See Table 1-1 for examples.

Table 1-1. Sample recovery codes

Wallet Recovery code
BlueWallet (1) media (2) suspect (3) effort (4) dish (5) album (6) shaft (7) price (8) junk (9) pizza (10) situate (11) oyster

(12) rib

Electrum nephew dog crane clever quantum crazy purse traffic repeat fruit old clutch

Muun LAFV TZUN V27E NU4D WPF4 BRJ4 ELLP BNFL

A recovery code is sometimes called a “mnemonic” or “mnemonic
phrase,” which implies you should memorize the phrase, but writ‐
ing the phrase down on paper takes less work and tends to be more
reliable than most people’s memories. Another alternative name is
“seed phrase” because it provides the input (“seed”) to the function
that generates all of a wallet’s keys.

If something happens to Alice’s wallet, she can download a new copy of her wallet
software and enter this recovery code to rebuild the wallet database of all the onchain
transactions she’s ever sent or received. However, recovering from the recovery code
will not by itself restore any additional data Alice entered into her wallet, such as the
labels she associated with particular addresses or transactions. Although losing access
to that metadata isn’t as important as losing access to money, it can still be important
in its own way. Imagine you need to review an old bank or credit card statement
and the name of every entity you paid (or who paid you) has been blanked out. To
prevent losing metadata, many wallets provide an additional backup feature beyond
recovery codes.

For some wallets, that additional backup feature is even more important today than
it used to be. Many Bitcoin payments are now made using offchain technology, where
not every payment is stored in the public blockchain. This reduces user’s costs and
improves privacy, among other benefits, but it means that a mechanism like recovery
codes that depends on onchain data can’t guarantee recovery of all of a user’s bitcoins.
For applications with offchain support, it’s important to make frequent backups of the
wallet database.
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Of note, when receiving funds to a new mobile wallet for the first time, many wallets
will often re-verify that you have securely backed-up your recovery code. This can
range from a simple prompt to requiring the user to manually re-enter the code.

Although many legitimate wallets will prompt you to re-enter
your recovery code, there are also many malware applications
that mimic the design of a wallet, insist you enter your recovery
code, and then relay any entered code to the malware developer
so they can steal your funds. This is the equivalent of phishing
websites that try to trick you into giving them your bank pass‐
phrase. For most wallet applications, the only times they will ask
for your recovery code are during the initial set up (before you
have received any bitcoins) and during recovery (after you lost
access to your original wallet). If the application asks for your
recovery code any other time, consult with an expert to ensure you
aren’t being phished.

Bitcoin Addresses
Alice is now ready to start using her new Bitcoin wallet. Her wallet application
randomly generated a private key (described in more detail in “Private Keys” on page
55) that will be used to derive Bitcoin addresses that direct to her wallet. At this
point, her Bitcoin addresses are not known to the Bitcoin network or “registered”
with any part of the Bitcoin system. Her Bitcoin addresses are simply numbers that
correspond to her private key that she can use to control access to the funds. The
addresses are generated independently by her wallet without reference or registration
with any service.

There are a variety of Bitcoin addresses and invoice formats.
Addresses and invoices can be shared with other Bitcoin users
who can use them to send bitcoins directly to your wallet. You can
share an address or invoice with other people without worrying
about the security of your bitcoins. Unlike a bank account number,
nobody who learns one of your Bitcoin addresses can withdraw
money from your wallet—you must initiate all spends. However,
if you give two people the same address, they will be able to see
how many bitcoins the other person sent you. If you post your
address publicly, everyone will be able to see how much bitcoin
other people sent to that address. To protect your privacy, you
should generate a new invoice with a new address each time you
request a payment.
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Receiving Bitcoin
Alice uses the Receive button, which displays a QR code, shown in Figure 1-1.

Figure 1-1. Alice uses the Receive screen on her mobile Bitcoin wallet and displays her
address in a QR code format.

The QR code is the square with a pattern of black and white dots, serving as a form of
barcode that contains the same information in a format that can be scanned by Joe’s
smartphone camera.

Any funds sent to the addresses in this book will be lost. If you
want to test sending bitcoins, please consider donating it to a
bitcoin-accepting charity.

10 | Chapter 1: Introduction



Getting Your First Bitcoin
The first task for new users is to acquire some bitcoin.

Bitcoin transactions are irreversible. Most electronic payment networks such as credit
cards, debit cards, PayPal, and bank account transfers are reversible. For someone
selling bitcoin, this difference introduces a very high risk that the buyer will reverse
the electronic payment after they have received bitcoin, in effect defrauding the
seller. To mitigate this risk, companies accepting traditional electronic payments
in return for bitcoin usually require buyers to undergo identity verification and
credit-worthiness checks, which may take several days or weeks. As a new user, this
means you cannot buy bitcoin instantly with a credit card. With a bit of patience and
creative thinking, however, you won’t need to.

Here are some methods for acquiring bitcoin as a new user:

• Find a friend who has bitcoins and buy some from him or her directly. Many Bit‐•
coin users start this way. This method is the least complicated. One way to meet
people with bitcoins is to attend a local Bitcoin meetup listed at Meetup.com.

• Earn bitcoin by selling a product or service for bitcoin. If you are a programmer,•
sell your programming skills. If you’re a hairdresser, cut hair for bitcoins.

• Use a Bitcoin ATM in your city. A Bitcoin ATM is a machine that accepts cash•
and sends bitcoins to your smartphone Bitcoin wallet.

• Use a Bitcoin currency exchange linked to your bank account. Many countries•
now have currency exchanges that offer a market for buyers and sellers to swap
bitcoins with local currency. Exchange-rate listing services, such as BitcoinAver‐
age, often show a list of Bitcoin exchanges for each currency.

One of the advantages of Bitcoin over other payment systems is
that, when used correctly, it affords users much more privacy.
Acquiring, holding, and spending bitcoin does not require you to
divulge sensitive and personally identifiable information to third
parties. However, where bitcoin touches traditional systems, such
as currency exchanges, national and international regulations often
apply. In order to exchange bitcoin for your national currency, you
will often be required to provide proof of identity and banking
information. Users should be aware that once a Bitcoin address is
attached to an identity, other associated Bitcoin transactions may
also become easy to identify and track—including transactions
made earlier. This is one reason many users choose to maintain
dedicated exchange accounts independent from their wallets.
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Alice was introduced to Bitcoin by a friend, so she has an easy way to acquire her first
bitcoins. Next, we will look at how she buys bitcoins from her friend Joe and how Joe
sends the bitcoins to her wallet.

Finding the Current Price of Bitcoin
Before Alice can buy bitcoin from Joe, they have to agree on the exchange rate
between bitcoin and US dollars. This brings up a common question for those new to
Bitcoin: “Who sets the price of bitcoins?” The short answer is that the price is set by
markets.

Bitcoin, like most other currencies, has a floating exchange rate. That means that the
value of bitcoin fluctuates according to supply and demand in the various markets
where it is traded. For example, the “price” of bitcoin in US dollars is calculated in
each market based on the most recent trade of bitcoins and US dollars. As such,
the price tends to fluctuate minutely several times per second. A pricing service will
aggregate the prices from several markets and calculate a volume-weighted average
representing the broad market exchange rate of a currency pair (e.g., BTC/USD).

There are hundreds of applications and websites that can provide the current market
rate. Here are some of the most popular:

Bitcoin Average
A site that provides a simple view of the volume-weighted average for each
currency.

CoinCap
A service listing the market capitalization and exchange rates of hundreds of
cryptocurrencies, including bitcoins.

Chicago Mercantile Exchange Bitcoin Reference Rate
A reference rate that can be used for institutional and contractual reference,
provided as part of investment data feeds by the CME.

In addition to these various sites and applications, some Bitcoin wallets will automati‐
cally convert amounts between bitcoin and other currencies.

Sending and Receiving Bitcoin
Alice has decided to buy 0.001 bitcoins. After she and Joe check the exchange rate,
she gives Joe an appropriate amount of cash, opens her mobile wallet application, and
selects Receive. This displays a QR code with Alice’s first Bitcoin address.

Joe then selects Send on his smartphone wallet and opens the QR code scanner. This
allows Joe to scan the barcode with his smartphone camera so that he doesn’t have to
type in Alice’s Bitcoin address, which is quite long.
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Joe now has Alice’s Bitcoin address set as the recipient. Joe enters the amount as 0.001
bitcoins (BTC); see Figure 1-2. Some wallets may show the amount in a different
denomination: 0.001 BTC is 1 millibitcoin (mBTC) or 100,000 satoshis (sats).

Some wallets may also suggest Joe enter a label for this transaction; if so, Joe enters
“Alice”. Weeks or months from now, this will help Joe remember why he sent these
0.001 bitcoins. Some wallets may also prompt Joe about fees. Depending on the
wallet and how the transaction is being sent, the wallet may ask Joe to either enter a
transaction fee rate or prompt him with a suggested fee (or fee rate). The higher the
transaction fee, the faster the transaction will be confirmed (see “Confirmations” on
page 14).

Figure 1-2. Bitcoin wallet send screen.

Joe then carefully checks to make sure he has entered the correct amount, because he
is about to transmit money and mistakes will soon become irreversible. After double-
checking the address and amount, he presses Send to transmit the transaction. Joe’s
mobile Bitcoin wallet constructs a transaction that assigns 0.001 BTC to the address
provided by Alice, sourcing the funds from Joe’s wallet, and signing the transaction
with Joe’s private keys. This tells the Bitcoin network that Joe has authorized a
transfer of value to Alice’s new address. As the transaction is transmitted via the
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peer-to-peer protocol, it quickly propagates across the Bitcoin network. After just a
few seconds, most of the well-connected nodes in the network receive the transaction
and see Alice’s address for the first time.

Meanwhile, Alice’s wallet is constantly “listening” for new transactions on the Bitcoin
network, looking for any that match the addresses it contains. A few seconds after
Joe’s wallet transmits the transaction, Alice’s wallet will indicate that it is receiving
0.001 BTC.

Confirmations
At first, Alice’s address will show the transaction from Joe as “Unconfirmed.” This
means that the transaction has been propagated to the network but has not yet
been recorded in the Bitcoin transaction journal, known as the blockchain. To be
confirmed, a transaction must be included in a block and added to the blockchain,
which happens every 10 minutes, on average. In traditional financial terms this is
known as clearing. For more details on propagation, validation, and clearing (confir‐
mation) of bitcoin transactions, see Chapter 12.

Alice is now the proud owner of 0.001 BTC that she can spend. Over the next few
days, Alice buys more bitcoin using an ATM and an exchange. In the next chapter we
will look at her first purchase with Bitcoin, and examine the underlying transaction
and propagation technologies in more detail.
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CHAPTER 2

How Bitcoin Works

The Bitcoin system, unlike traditional banking and payment systems, does not
require trust in third parties. Instead of a central trusted authority, in Bitcoin, each
user can use software running on their own computer to verify the correct operation
of every aspect of the Bitcoin system. In this chapter, we will examine Bitcoin from a
high level by tracking a single transaction through the Bitcoin system and watch as it
is recorded on the blockchain, the distributed journal of all transactions. Subsequent
chapters will delve into the technology behind transactions, the network, and mining.

Bitcoin Overview
The Bitcoin system consists of users with wallets containing keys, transactions that are
propagated across the network, and miners who produce (through competitive compu‐
tation) the consensus blockchain, which is the authoritative journal of all transactions.

Each example in this chapter is based on an actual transaction made on the Bitcoin
network, simulating the interactions between several users by sending funds from one
wallet to another. While tracking a transaction through the Bitcoin network to the
blockchain, we will use a blockchain explorer site to visualize each step. A blockchain
explorer is a web application that operates as a Bitcoin search engine, in that it allows
you to search for addresses, transactions, and blocks and see the relationships and flows
between them.

Popular blockchain explorers include the following:

• Blockstream Explorer•
• Mempool.Space•
• BlockCypher Explorer•
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Each of these has a search function that can take a Bitcoin address, transaction
hash, block number, or block hash and retrieve corresponding information from the
Bitcoin network. With each transaction or block example, we will provide a URL so
you can look it up yourself and study it in detail.

Block Explorer Privacy Warning

Searching information on a block explorer may disclose to its oper‐
ator that you’re interested in that information, allowing them to
associate it with your IP address, browser details, past searches,
or other identifiable information. If you look up the transactions
in this book, the operator of the block explorer might guess that
you’re learning about Bitcoin, which shouldn’t be a problem. But
if you look up your own transactions, the operator may be able to
guess how many bitcoins you’ve received, spent, and currently own.

Buying from an Online Store
Alice, introduced in the previous chapter, is a new user who has just acquired her first
bitcoins. In “Getting Your First Bitcoin” on page 11, Alice met with her friend Joe
to exchange some cash for bitcoins. Since then, Alice has bought additional bitcoins.
Now Alice will make her first spending transaction, buying access to a premium
podcast episode from Bob’s online store.

Bob’s web store recently started accepting bitcoin payments by adding a Bitcoin
option to its website. The prices at Bob’s store are listed in the local currency (US
dollars), but at checkout, customers have the option of paying in either dollars or
bitcoin.

Alice finds the podcast episode she wants to buy and proceeds to the checkout page.
At checkout, Alice is offered the option to pay with bitcoin in addition to the usual
options. The checkout cart displays the price in US dollars and also in bitcoin (BTC),
at Bitcoin’s prevailing exchange rate.

Bob’s ecommerce system will automatically create a QR code containing an invoice
(Figure 2-1).

Figure 2-1. Invoice QR code.
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Unlike a QR code that simply contains a destination Bitcoin address, this invoice is
a QR-encoded URI that contains a destination address, a payment amount, and a
description. This allows a Bitcoin wallet application to prefill the information used to
send the payment while showing a human-readable description to the user. You can
scan the QR code with a bitcoin wallet application to see what Alice would see:

bitcoin:bc1qk2g6u8p4qm2s2lh3gts5cpt2mrv5skcuu7u3e4?amount=0.01577764&
label=Bob%27s%20Store&
message=Purchase%20at%20Bob%27s%20Store

Components of the URI

A Bitcoin address: "bc1qk2g6u8p4qm2s2lh3gts5cpt2mrv5skcuu7u3e4"
The payment amount: "0.01577764"
A label for the recipient address: "Bob's Store"
A description for the payment: "Purchase at Bob's Store"

Try to scan this with your wallet to see the address and amount but
DO NOT SEND MONEY.

Alice uses her smartphone to scan the barcode on display. Her smartphone shows a
payment for the correct amount to Bob’s Store and she selects Send to authorize
the payment. Within a few seconds (about the same amount of time as a credit card
authorization), Bob sees the transaction on the register.

The Bitcoin network can transact in fractional values, e.g., from
millibitcoin (1/1000th of a bitcoin) down to 1/100,000,000th of
a bitcoin, which is known as a satoshi. This book uses the same
pluralization rules used for dollars and other traditional currencies
when talking about amounts greater than one bitcoin and when
using decimal notation, such as “10 bitcoins” or “0.001 bitcoins.”
The same rules also apply to other bitcoin bookkeeping units, such
as millibitcoins and satoshis.

You can use a block explorer to examine blockchain data, such as the payment made
to Bob in Alice’s transaction.

In the following sections, we will examine this transaction in more detail. We’ll see
how Alice’s wallet constructed it, how it was propagated across the network, how it
was verified, and finally, how Bob can spend that amount in subsequent transactions.
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Bitcoin Transactions
In simple terms, a transaction tells the network that the owner of certain bitcoins
has authorized the transfer of that value to another owner. The new owner can now
spend the bitcoin by creating another transaction that authorizes the transfer to
another owner, and so on, in a chain of ownership.

Transaction Inputs and Outputs
Transactions are like lines in a double-entry bookkeeping ledger. Each transaction
contains one or more inputs, which spend funds. On the other side of the transaction,
there are one or more outputs, which receive funds. The inputs and outputs do
not necessarily add up to the same amount. Instead, outputs add up to slightly less
than inputs and the difference represents an implied transaction fee, which is a small
payment collected by the miner who includes the transaction in the blockchain. A
Bitcoin transaction is shown as a bookkeeping ledger entry in Figure 2-2.

The transaction also contains proof of ownership for each amount of bitcoins
(inputs) whose value is being spent, in the form of a digital signature from the
owner, which can be independently validated by anyone. In Bitcoin terms, spending
is signing a transaction that transfers value from a previous transaction over to a new
owner identified by a Bitcoin address.

Figure 2-2. Transaction as double-entry bookkeeping.
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Transaction Chains
Alice’s payment to Bob’s Store uses a previous transaction’s output as its input. In the
previous chapter, Alice received bitcoins from her friend Joe in return for cash. We’ve
labeled that as Transaction 1 (Tx1) in Figure 2-3.

Tx1 sent 0.001 bitcoins (100,000 satoshis) to an output locked by Alice’s key. Her
new transaction to Bob’s Store (Tx2) references the previous output as an input. In
the illustration, we show that reference using an arrow and by labeling the input as
“Tx1:0”. In an actual transaction, the reference is the 32-byte transaction identifier
(txid) for the transaction where Alice received the money from Joe. The “:0” indicates
the position of the output where Alice received the money; in this case, the first
position (position 0).

As shown, actual Bitcoin transactions don’t explicitly include the value of their input.
To determine the value of an input, software needs to use the input’s reference to find
the previous transaction output being spent.

Alice’s Tx2 contains two new outputs, one paying 75,000 satoshis for the podcast and
another paying 20,000 satoshis back to Alice to receive change.

Figure 2-3. A chain of transactions, where the output of one transaction is the input of
the next transaction.

Serialized Bitcoin transactions—the data format that software uses
for sending transactions—encodes the value to transfer using an
integer of the smallest defined onchain unit of value. When Bitcoin
was first created, this unit didn’t have a name and some developers
simply called it the base unit. Later many users began calling this
unit a satoshi (sat) in honor of Bitcoin’s creator. In Figure 2-3 and
some other illustrations in this book, we use satoshi values because
that’s what the protocol itself uses.
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Making Change
In addition to one or more outputs that pay the receiver of bitcoins, many transac‐
tions will also include an output that pays the spender of the bitcoins, called a change
output. This is because transaction inputs, like currency notes, cannot be partly spent.
If you purchase a $5 US item in a store but use a $20 bill to pay for the item, you
expect to receive $15 in change. The same concept applies to Bitcoin transaction
inputs. If you purchased an item that costs 5 bitcoins but only had an input worth 20
bitcoins to use, you would send one output of 5 bitcoins to the store owner and one
output of 15 bitcoins back to yourself as change (not counting your transaction fee).

At the level of the Bitcoin protocol, there is no difference between a change output
(and the address it pays, called a change address) and a payment output.

Importantly, the change address does not have to be the same address as that of the
input and, for privacy reasons, is often a new address from the owner’s wallet. In ideal
circumstances, the two different uses of outputs both use never-before-seen addresses
and otherwise look identical, preventing any third party from determining which
outputs are change and which are payments. However, for illustration purposes, we’ve
added shading to the change outputs in Figure 2-3.

Not every transaction has a change output. Those that don’t are called changeless
transactions, and they can have only a single output. Changeless transactions are only
a practical option if the amount being spent is roughly the same as the amount avail‐
able in the transaction inputs minus the anticipated transaction fee. In Figure 2-3, we
see Bob creating Tx3 as a changeless transaction that spends the output he received in
Tx2.

Coin Selection
Different wallets use different strategies when choosing which inputs to use in a
payment, called coin selection.

They might aggregate many small inputs, or use one that is equal to or larger than
the desired payment. Unless the wallet can aggregate inputs in such a way to exactly
match the desired payment plus transaction fees, the wallet will need to generate
some change. This is very similar to how people handle cash. If you always use the
largest bill in your pocket, you will end up with a pocket full of loose change. If
you only use the loose change, you’ll often have only big bills. People subconsciously
find a balance between these two extremes, and Bitcoin wallet developers strive to
program this balance.
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Common Transaction Forms
A very common form of transaction is a simple payment. This type of transaction has
one input and two outputs and is shown in Figure 2-4.

Figure 2-4. Most common transaction.

Another common form of transaction is a consolidation transaction, which spends
several inputs into a single output (Figure 2-5). This represents the real-world equiv‐
alent of exchanging a pile of coins and currency notes for a single larger note.
Transactions like these are sometimes generated by wallets and businesses to clean up
lots of smaller amounts.

Figure 2-5. Consolidation transaction aggregating funds.

Finally, another transaction form that is seen often on the blockchain is payment
batching, which pays to multiple outputs representing multiple recipients (Fig‐
ure 2-6). This type of transaction is sometimes used by commercial entities to
distribute funds, such as when processing payroll payments to multiple employees.
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Figure 2-6. Batch transaction distributing funds.

Constructing a Transaction
Alice’s wallet application contains all the logic for selecting inputs and generating
outputs to build a transaction to Alice’s specification. Alice only needs to choose a
destination, amount, and transaction fee, and the rest happens in the wallet applica‐
tion without her seeing the details. Importantly, if a wallet already knows what inputs
it controls, it can construct transactions even if it is completely offline. Like writing a
check at home and later sending it to the bank in an envelope, the transaction does
not need to be constructed and signed while connected to the Bitcoin network.

Getting the Right Inputs
Alice’s wallet application will first have to find inputs that can pay the amount she
wants to send to Bob. Most wallets keep track of all the available outputs belonging
to addresses in the wallet. Therefore, Alice’s wallet would contain a copy of the
transaction output from Joe’s transaction, which was created in exchange for cash (see
“Getting Your First Bitcoin” on page 11). A Bitcoin wallet application that runs on a
full node actually contains a copy of every confirmed transaction’s unspent outputs,
called unspent transaction outputs (UTXOs). However, because full nodes use more
resources, many user wallets run lightweight clients that track only the user’s own
UTXOs.

In this case, this single UTXO is sufficient to pay for the podcast. Had this not been
the case, Alice’s wallet application might have to combine several smaller UTXOs, like
picking coins from a purse, until it could find enough to pay for the podcast. In both
cases, there might be a need to get some change back, which we will see in the next
section, as the wallet application creates the transaction outputs (payments).
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Creating the Outputs
A transaction output is created with a script that says something like, “This output
is paid to whoever can present a signature from the key corresponding to Bob’s
public address.” Because only Bob has the wallet with the keys corresponding to that
address, only Bob’s wallet can present such a signature to later spend this output.
Alice will therefore encumber the output value with a demand for a signature from
Bob.

This transaction will also include a second output because Alice’s funds contain more
money than the cost of the podcast. Alice’s change output is created in the very same
transaction as the payment to Bob. Essentially, Alice’s wallet breaks her funds into two
outputs: one to Bob and one back to herself. She can then spend the change output in
a subsequent transaction.

Finally, for the transaction to be processed by the network in a timely fashion,
Alice’s wallet application will add a small fee. The fee is not explicitly stated in the
transaction; it is implied by the difference in value between inputs and outputs. This
transaction fee is collected by the miner as a fee for including the transaction in a
block that gets recorded on the blockchain.

View the transaction from Alice to Bob’s Store.

Adding the Transaction to the Blockchain
The transaction created by Alice’s wallet application contains everything necessary to
confirm ownership of the funds and assign new owners. Now, the transaction must
be transmitted to the Bitcoin network where it will become part of the blockchain.
In the next section we will see how a transaction becomes part of a new block and
how the block is mined. Finally, we will see how the new block, once added to the
blockchain, is increasingly trusted by the network as more blocks are added.

Transmitting the transaction
Because the transaction contains all the information necessary for it to be processed,
it does not matter how or where it is transmitted to the Bitcoin network. The
Bitcoin network is a peer-to-peer network, with each Bitcoin peer participating by
connecting to several other Bitcoin peers. The purpose of the Bitcoin network is to
propagate transactions and blocks to all participants.
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How it propagates
Peers in the Bitcoin peer-to-peer network are programs that have both the software
logic and the data necessary for them to fully verify the correctness of a new transac‐
tion. The connections between peers are often visualized as edges (lines) in a graph,
with the peers themselves being the nodes (dots). For that reason, Bitcoin peers are
commonly called “full verification nodes,” or full nodes for short.

Alice’s wallet application can send the new transaction to any Bitcoin node over
any type of connection: wired, WiFi, mobile, etc. It can also send the transaction to
another program (such as a block explorer) that will relay it to a node. Her Bitcoin
wallet does not have to be connected to Bob’s Bitcoin wallet directly and she does
not have to use the internet connection offered by Bob, though both those options
are possible too. Any Bitcoin node that receives a valid transaction it has not seen
before will forward it to all other nodes to which it is connected, a propagation
technique known as gossiping. Thus, the transaction rapidly propagates out across the
peer-to-peer network, reaching a large percentage of the nodes within a few seconds.

Bob’s view
If Bob’s Bitcoin wallet application is directly connected to Alice’s wallet application,
Bob’s wallet application might be the first to receive the transaction. However, even
if Alice’s wallet sends the transaction through other nodes, it will reach Bob’s wallet
within a few seconds. Bob’s wallet will immediately identify Alice’s transaction as an
incoming payment because it contains an output redeemable by Bob’s keys. Bob’s
wallet application can also independently verify that the transaction is well formed. If
Bob is using his own full node, his wallet can further verify Alice’s transaction only
spends valid UTXOs.

Bitcoin Mining
Alice’s transaction is now propagated on the Bitcoin network. It does not become part
of the blockchain until it is included in a block by a process called mining and that
block has been validated by full nodes. See Chapter 12 for a detailed explanation.

Bitcoin’s system of counterfeit protection is based on computation. Transactions are
bundled into blocks. Blocks have a very small header that must be formed in a very
specific way, requiring an enormous amount of computation to get right—but only
a small amount of computation to verify as correct. The mining process serves two
purposes in Bitcoin:
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• Miners can only receive honest income from creating blocks that follow all of•
Bitcoin’s consensus rules. Therefore, miners are normally incentivized to only
include valid transactions in their blocks and the blocks they build upon. This
allows users to optionally make a trust-based assumption that any transaction in
a block is a valid transaction.

• Mining currently creates new bitcoins in each block, almost like a central bank•
printing new money. The amount of bitcoin created per block is limited and
diminishes with time, following a fixed issuance schedule.

Mining achieves a fine balance between cost and reward. Mining uses electricity to
solve a computational problem. A successful miner will collect a reward in the form
of new bitcoins and transaction fees. However, the reward will only be collected
if the miner has only included valid transactions, with the Bitcoin protocol’s rules
for consensus determining what is valid. This delicate balance provides security for
Bitcoin without a central authority.

Mining is designed to be a decentralized lottery. Each miner can create their own
lottery ticket by creating a candidate block that includes the new transactions they
want to mine plus some additional data fields. The miner inputs their candidate
into a specially designed algorithm that scrambles (or “hashes”) the data, producing
output that looks nothing like the input data. This hash function will always produce
the same output for the same input—but nobody can predict what the output will
look like for a new input, even if it is only slightly different from a previous input.
If the output of the hash function matches a template determined by the Bitcoin
protocol, the miner wins the lottery and Bitcoin users will accept the block with its
transactions as a valid block. If the output doesn’t match the template, the miner
makes a small change to their candidate block and tries again. As of this writing, the
number of candidate blocks miners need to try before finding a winning combination
is about 168 billion trillion. That’s also how many times the hash function needs to be
run.

However, once a winning combination has been found, anyone can verify the block
is valid by running the hash function just once. That makes a valid block something
that requires an incredible amount of work to create but only a trivial amount of
work to verify. The simple verification process is able to probabalistically prove the
work was done, so the data necessary to generate that proof—in this case, the block—
is called proof of work (PoW).

Transactions are added to the new block, prioritized by the highest fee rate transac‐
tions first and a few other criteria. Each miner starts the process of mining a new
candidate block of transactions as soon as they receive the previous block from the
network, knowing that some other miner won that iteration of the lottery. They
immediately create a new candidate block with a commitment to the previous block,
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fill it with transactions, and start calculating the PoW for the candidate block. Each
miner includes a special transaction in their candidate blocks, one that pays their
own Bitcoin address the block reward plus the sum of transaction fees from all the
transactions included in the candidate block. If they find a solution that makes the
candidate into a valid block, they receive this reward after their successful block is
added to the global blockchain and the reward transaction they included becomes
spendable. Miners who participate in a mining pool have set up their software to
create candidate blocks that assign the reward to a pool address. From there, a share
of the reward is distributed to members of the pool miners in proportion to the
amount of work they contributed.

Alice’s transaction was picked up by the network and included in the pool of unveri‐
fied transactions. Once validated by a full node, it was included in a candidate block.
Approximately five minutes after the transaction was first transmitted by Alice’s
wallet, a miner finds a solution for the block and announces it to the network. After
each other miner validates the winning block, they start a new lottery to generate the
next block.

The winning block containing Alice’s transaction became part of the blockchain.
The block containing Alice’s transaction is counted as one confirmation of that trans‐
action. After the block containing Alice’s transaction has propagated through the
network, creating an alternative block with a different version of Alice’s transaction
(such as a transaction that doesn’t pay Bob) would require performing the same
amount of work as it will take all Bitcoin miners to create an entirely new block.
When there are multiple alternative blocks to choose from, Bitcoin full nodes choose
the chain of valid blocks with the most total PoW, called the best blockchain. For the
entire network to accept an alternative block, an additional new block would need to
be mined on top of the alternative.

That means miners have a choice. They can work with Alice on an alternative to
the transaction where she pays Bob, perhaps with Alice paying miners a share of the
money she previously paid Bob. This dishonest behavior will require they expend the
effort required to create two new blocks. Instead, miners who behave honestly can
create a single new block and receive all of the fees from the transactions they include
in it, plus the block subsidy. Normally, the high cost of dishonestly creating two
blocks for a small additional payment is much less profitable than honestly creating
a new block, making it unlikely that a confirmed transaction will be deliberately
changed. For Bob, this means that he can begin to believe that the payment from
Alice can be relied upon.

You can see the block that includes Alice’s transaction.
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Approximately 19 minutes after the block containing Alice’s transaction is broadcast,
a new block is mined by another miner. Because this new block is built on top
of the block that contained Alice’s transaction (giving Alice’s transaction two confir‐
mations), Alice’s transaction can now only be changed if two alternative blocks are
mined—plus a new block built on top of them—for a total of three blocks that would
need to be mined for Alice to take back the money she sent Bob. Each block mined
on top of the one containing Alice’s transaction counts as an additional confirmation.
As the blocks pile on top of each other, it becomes harder to reverse the transaction,
thereby giving Bob more and more confidence that Alice’s payment is secure.

In Figure 2-7, we can see the block that contains Alice’s transaction. Below it are hun‐
dreds of thousands of blocks, linked to each other in a chain of blocks (blockchain)
all the way back to block #0, known as the genesis block. Over time, as the “height” of
new blocks increases, so does the computation difficulty for the chain as a whole. By
convention, any block with more than six confirmations is considered very hard to
change, because it would require an immense amount of computation to recalculate
six blocks (plus one new block). We will examine the process of mining and the way it
builds confidence in more detail in Chapter 12.

Figure 2-7. Alice’s transaction included in a block.
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Spending the Transaction
Now that Alice’s transaction has been embedded in the blockchain as part of a block,
it is visible to all Bitcoin applications. Each Bitcoin full node can independently
verify the transaction as valid and spendable. Full nodes validate every transfer of
the funds from the moment the bitcoins were first generated in a block through
each subsequent transaction until they reach Bob’s address. Lightweight clients can
partially verify payments by confirming that the transaction is in the blockchain and
has several blocks mined after it, thus providing assurance that the miners expended
significant effort committing to it (see “Lightweight Clients” on page 228).

Bob can now spend the output from this and other transactions. For example, Bob
can pay a contractor or supplier by transferring value from Alice’s podcast payment
to these new owners. As Bob spends the payments received from Alice and other
customers, he extends the chain of transactions. Let’s assume that Bob pays his web
designer Gopesh for a new website page. Now the chain of transactions will look like
Figure 2-8.

Figure 2-8. Alice’s transaction as part of a transaction chain from Joe to Gopesh.

In this chapter, we saw how transactions build a chain that moves value from owner
to owner. We also tracked Alice’s transaction from the moment it was created in
her wallet, through the Bitcoin network, and to the miners who recorded it on the
blockchain. In the rest of this book, we will examine the specific technologies behind
wallets, addresses, signatures, transactions, the network, and finally, mining.
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CHAPTER 3

Bitcoin Core: The Reference
Implementation

People only accept money in exchange for their valuable goods and services if they
believe that they’ll be able to spend that money later. Money that is counterfeit or
unexpectedly debased may not be spendable later, so every person accepting bitcoins
has a strong incentive to verify the integrity of the bitcoins they receive. The Bitcoin
system was designed so that it’s possible for software running entirely on your local
computer to perfectly prevent counterfeiting, debasement, and several other critical
problems. Software which provides that function is called a full verification node
because it verifies every confirmed Bitcoin transaction against every rule in the sys‐
tem. Full verification nodes, full nodes for short, may also provide tools and data for
understanding how Bitcoin works and what is currently happening in the network.

In this chapter, we’ll install Bitcoin Core, the implementation that most full node
operators have used since the beginning of the Bitcoin network. We’ll then inspect
blocks, transactions, and other data from your node, data which is authoritative—not
because some powerful entity designated it as such but because your node independ‐
ently verified it. Throughout the rest of this book, we’ll continue using Bitcoin Core
to create and examine data related to the blockchain and network.

From Bitcoin to Bitcoin Core
Bitcoin is an open source project and the source code is available under an open
(MIT) license, free to download and use for any purpose. More than just being
open source, Bitcoin is developed by an open community of volunteers. At first, that
community consisted of only Satoshi Nakamoto. By 2023, Bitcoin’s source code had
more than 1,000 contributors with about a dozen developers working on the code
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almost full time and several dozen more on a part-time basis. Anyone can contribute
to the code—including you!

When Bitcoin was created by Satoshi Nakamoto, the software was mostly completed
before publication of the whitepaper (reproduced in Appendix A). Satoshi wanted
to make sure the implementation worked before publishing a paper about it. That
first implementation, then simply known as “Bitcoin,” has been heavily modified and
improved. It has evolved into what is known as Bitcoin Core, to differentiate it from
other implementations. Bitcoin Core is the reference implementation of the Bitcoin
system, meaning that it provides a reference for how each part of the technology
should be implemented. Bitcoin Core implements all aspects of Bitcoin, including
wallets, a transaction and block validation engine, tools for block construction, and
all modern parts of Bitcoin peer-to-peer communication.

Figure 3-1 shows the architecture of Bitcoin Core.

Figure 3-1. Bitcoin Core architecture (Source: Eric Lombrozo).
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Although Bitcoin Core serves as a reference implementation for many major parts
of the system, the Bitcoin whitepaper describes several early parts of the system.
Most major parts of the system since 2011 have been documented in a set of Bitcoin
Improvement Proposals (BIPs). Throughout this book, we refer to BIP specifications
by their number; for example, BIP9 describes a mechanism used for several major
upgrades to Bitcoin.

Bitcoin Development Environment
If you’re a developer, you will want to set up a development environment with all
the tools, libraries, and support software for writing Bitcoin applications. In this
highly technical chapter, we’ll walk through that process step by step. If the material
becomes too dense (and you’re not actually setting up a development environment)
feel free to skip to the next chapter, which is less technical.

Compiling Bitcoin Core from the Source Code
Bitcoin Core’s source code can be downloaded as an archive or by cloning the source
repository from GitHub. On the Bitcoin Core download page, select the most recent
version and download the compressed archive of the source code. Alternatively, use
the Git command line to create a local copy of the source code from the GitHub
Bitcoin page.

In many of the examples in this chapter, we will be using the oper‐
ating system’s command-line interface (also known as a “shell”),
accessed via a “terminal” application. The shell will display a
prompt, you type a command, and the shell responds with some
text and a new prompt for your next command. The prompt may
look different on your system, but in the following examples, it is
denoted by a $ symbol. In the examples, when you see text after a
$ symbol, don’t type the $ symbol but type the command immedi‐
ately following it, then press Enter to execute the command. In the
examples, the lines below each command are the operating system’s
responses to that command. When you see the next $ prefix, you’ll
know it’s a new command and you should repeat the process.

Here, we use the git command to create a local copy (“clone”) of the source code:

$ git clone https://github.com/bitcoin/bitcoin.git
Cloning into 'bitcoin'...
remote: Enumerating objects: 245912, done.
remote: Counting objects: 100% (3/3), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 245912 (delta 1), reused 2 (delta 1), pack-reused 245909
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Receiving objects: 100% (245912/245912), 217.74 MiB | 13.05 MiB/s, done.
Resolving deltas: 100% (175649/175649), done.

Git is the most widely used distributed version control system, an
essential part of any software developer’s toolkit. You may need to
install the git command, or a graphical user interface for Git, on
your operating system if you do not have it already.

When the Git cloning operation has completed, you will have a complete local copy
of the source code repository in the directory bitcoin. Change to this directory using
the cd command:

$ cd bitcoin

Selecting a Bitcoin Core Release
By default, the local copy will be synchronized with the most recent code, which
might be an unstable or beta version of Bitcoin. Before compiling the code, select a
specific version by checking out a release tag. This will synchronize the local copy
with a specific snapshot of the code repository identified by a keyword tag. Tags are
used by the developers to mark specific releases of the code by version number. First,
to find the available tags, we use the git tag command:

$ git tag
v0.1.5
v0.1.6test1
v0.10.0
...
v0.11.2
v0.11.2rc1
v0.12.0rc1
v0.12.0rc2
...

The list of tags shows all the released versions of Bitcoin. By convention, release
candidates, which are intended for testing, have the suffix “rc.” Stable releases that
can be run on production systems have no suffix. From the preceding list, select the
highest version release, which at the time of writing was v24.0.1. To synchronize the
local code with this version, use the git checkout command:

$ git checkout v24.0.1
Note: switching to 'v24.0.1'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

HEAD is now at b3f866a8d Merge bitcoin/bitcoin#26647: 24.0.1 final changes
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You can confirm you have the desired version “checked out” by issuing the command
git status:

HEAD detached at v24.0.1
nothing to commit, working tree clean

Configuring the Bitcoin Core Build
The source code includes documentation, which can be found in a number of files.
Review the main documentation located in README.md in the bitcoin directory. In
this chapter, we will build the Bitcoin Core daemon (server), also known as bitcoind
on Linux (a Unix-like system). Review the instructions for compiling the bitcoind
command-line client on your platform by reading doc/build-unix.md. Alternative
instructions can be found in the doc directory; for example, build-windows.md for
Windows instructions. As of this writing, instructions are available for Android,
FreeBSD, NetBSD, OpenBSD, macOS (OSX), Unix, and Windows.

Carefully review the build prerequisites, which are in the first part of the build
documentation. These are libraries that must be present on your system before you
can begin to compile Bitcoin. If these prerequisites are missing, the build process
will fail with an error. If this happens because you missed a prerequisite, you can
install it and then resume the build process from where you left off. Assuming the
prerequisites are installed, you start the build process by generating a set of build
scripts using the autogen.sh script:

$ ./autogen.sh
libtoolize: putting auxiliary files in AC_CONFIG_AUX_DIR, 'build-aux'.
libtoolize: copying file 'build-aux/ltmain.sh'
libtoolize: putting macros in AC_CONFIG_MACRO_DIRS, 'build-aux/m4'.
 ...
configure.ac:58: installing 'build-aux/missing'
src/Makefile.am: installing 'build-aux/depcomp'
parallel-tests: installing 'build-aux/test-driver'

The autogen.sh script creates a set of automatic configuration scripts that will inter‐
rogate your system to discover the correct settings and ensure you have all the
necessary libraries to compile the code. The most important of these is the configure
script that offers a number of different options to customize the build process. Use
the --help flag to see the various options:

$ ./configure --help
`configure' configures Bitcoin Core 24.0.1 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

...
Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
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  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]
  --enable-silent-rules   less verbose build output (undo: "make V=1")
  --disable-silent-rules  verbose build output (undo: "make V=0")
...

The configure script allows you to enable or disable certain features of bitcoind
through the use of the --enable-FEATURE and --disable-FEATURE flags, where
FEATURE is replaced by the feature name, as listed in the help output. In this chapter,
we will build the bitcoind client with all the default features. We won’t be using
the configuration flags, but you should review them to understand what optional
features are part of the client. If you are in an academic setting, computer lab
restrictions may require you to install applications in your home directory (e.g., using
--prefix=$HOME).

Here are some useful options that override the default behavior of the configure
script:

--prefix=$HOME

This overrides the default installation location (which is /usr/local/) for the
resulting executable. Use $HOME to put everything in your home directory, or
a different path.

--disable-wallet

This is used to disable the reference wallet implementation.

--with-incompatible-bdb

If you are building a wallet, allow the use of an incompatible version of the
Berkeley DB library.

--with-gui=no

Don’t build the graphical user interface, which requires the Qt library. This builds
server and command-line Bitcoin Core only.

Next, run the configure script to automatically discover all the necessary libraries
and create a customized build script for your system:

$ ./configure
checking for pkg-config... /usr/bin/pkg-config
checking pkg-config is at least version 0.9.0... yes
checking build system type... x86_64-pc-linux-gnu
checking host system type... x86_64-pc-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
...
[many pages of configuration tests follow]
...

If all went well, the configure command will end by creating the customized build
scripts that will allow us to compile bitcoind. If there are any missing libraries or
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errors, the configure command will terminate with an error instead of creating the
build scripts. If an error occurs, it is most likely because of a missing or incompatible
library. Review the build documentation again and make sure you install the missing
prerequisites. Then run configure again and see if that fixes the error.

Building the Bitcoin Core Executables
Next, you will compile the source code, a process that can take up to an hour to
complete, depending on the speed of your CPU and available memory. If an error
occurs, or the compilation process is interrupted, it can be resumed any time by
typing make again. Type make to start compiling the executable application:

$ make
Making all in src
  CXX      bitcoind-bitcoind.o
  CXX      libbitcoin_node_a-addrdb.o
  CXX      libbitcoin_node_a-addrman.o
  CXX      libbitcoin_node_a-banman.o
  CXX      libbitcoin_node_a-blockencodings.o
  CXX      libbitcoin_node_a-blockfilter.o
[... many more compilation messages follow ...]

On a fast system with more than one CPU, you might want to set the number of
parallel compile jobs. For instance, make -j 2 will use two cores if they are available.
If all goes well, Bitcoin Core is now compiled. You should run the unit test suite
with make check to ensure the linked libraries are not broken in obvious ways. The
final step is to install the various executables on your system using the make install
command. You may be prompted for your user password because this step requires
administrative privileges:

$ make check && sudo make install
Password:
Making install in src
 ../build-aux/install-sh -c -d '/usr/local/lib'
libtool: install: /usr/bin/install -c bitcoind /usr/local/bin/bitcoind
libtool: install: /usr/bin/install -c bitcoin-cli /usr/local/bin/bitcoin-cli
libtool: install: /usr/bin/install -c bitcoin-tx /usr/local/bin/bitcoin-tx
...

The default installation of bitcoind puts it in /usr/local/bin. You can confirm that
Bitcoin Core is correctly installed by asking the system for the path of the executables,
as follows:

$ which bitcoind
/usr/local/bin/bitcoind

$ which bitcoin-cli
/usr/local/bin/bitcoin-cli
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Running a Bitcoin Core Node
Bitcoin’s peer-to-peer network is composed of network “nodes,” run mostly by indi‐
viduals and some of the businesses that provide Bitcoin services. Those running
Bitcoin nodes have a direct and authoritative view of the Bitcoin blockchain, with a
local copy of all the spendable bitcoins independently validated by their own system.
By running a node, you don’t have to rely on any third party to validate a transaction.
Additionally, by using a Bitcoin node to fully validate the transactions you receive to
your wallet, you contribute to the Bitcoin network and help make it more robust.

Running a node, however, requires downloading and processing over 500 GB of data
initially and about 400 MB of Bitcoin transactions per day. These figures are for 2023
and will likely increase over time. If you shut down your node or get disconnected
from the internet for several days, your node will need to download the data that it
missed. For example, if you close Bitcoin Core for 10 days, you will need to download
approximately 4 GB the next time you start it.

Depending on whether you choose to index all transactions and keep a full copy of
the blockchain, you may also need a lot of disk space—at least 1 TB if you plan to run
Bitcoin Core for several years. By default, Bitcoin nodes also transmit transactions
and blocks to other nodes (called “peers”), consuming upload internet bandwidth. If
your internet connection is limited, has a low data cap, or is metered (charged by the
gigabit), you should probably not run a Bitcoin node on it, or run it in a way that
constrains its bandwidth (see “Configuring the Bitcoin Core Node” on page 37). You
may connect your node instead to an alternative network, such as a free satellite data
provider like Blockstream Satellite.

Bitcoin Core keeps a full copy of the blockchain by default, with
nearly every transaction that has ever been confirmed on the Bit‐
coin network since its inception in 2009. This dataset is hundreds
of gigabytes in size and is downloaded incrementally over several
hours or days, depending on the speed of your CPU and internet
connection. Bitcoin Core will not be able to process transactions
or update account balances until the full blockchain dataset is
downloaded. Make sure you have enough disk space, bandwidth,
and time to complete the initial synchronization. You can configure
Bitcoin Core to reduce the size of the blockchain by discarding old
blocks, but it will still download the entire dataset.

Despite these resource requirements, thousands of people run Bitcoin nodes. Some
are running on systems as simple as a Raspberry Pi (a $35 USD computer the size of a
pack of cards).
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Why would you want to run a node? Here are some of the most common reasons:

• You do not want to rely on any third party to validate the transactions you•
receive.

• You do not want to disclose to third parties which transactions belong to your•
wallet.

• You are developing Bitcoin software and need to rely on a Bitcoin node for•
programmable (API) access to the network and blockchain.

• You are building applications that must validate transactions according to Bit‐•
coin’s consensus rules. Typically, Bitcoin software companies run several nodes.

• You want to support Bitcoin. Running a node that you use to validate the transac‐•
tions you receive to your wallet makes the network more robust.

If you’re reading this book and interested in strong security, superior privacy, or
developing Bitcoin software, you should be running your own node.

Configuring the Bitcoin Core Node
Bitcoin Core will look for a configuration file in its data directory on every start.
In this section we will examine the various configuration options and set up a
configuration file. To locate the configuration file, run bitcoind -printtoconsole in
your terminal and look for the first couple of lines:

$ bitcoind -printtoconsole
2023-01-28T03:21:42Z Bitcoin Core version v24.0.1
2023-01-28T03:21:42Z Using the 'x86_shani(1way,2way)' SHA256 implementation
2023-01-28T03:21:42Z Using RdSeed as an additional entropy source
2023-01-28T03:21:42Z Using RdRand as an additional entropy source
2023-01-28T03:21:42Z Default data directory /home/harding/.bitcoin
2023-01-28T03:21:42Z Using data directory /home/harding/.bitcoin
2023-01-28T03:21:42Z Config file: /home/harding/.bitcoin/bitcoin.conf
...
[a lot more debug output]
...

You can hit Ctrl-C to shut down the node once you determine the location of the
config file. Usually the configuration file is inside the .bitcoin data directory under
your user’s home directory. Open the configuration file in your preferred editor.

Bitcoin Core offers more than 100 configuration options that modify the behavior
of the network node, the storage of the blockchain, and many other aspects of its
operation. To see a listing of these options, run bitcoind --help:

$ bitcoind --help
Bitcoin Core version v24.0.1

Configuring the Bitcoin Core Node | 37



Usage:  bitcoind [options]                     Start Bitcoin Core

Options:

  -?
       Print this help message and exit

  -alertnotify=<cmd>
       Execute command when an alert is raised (%s in cmd is replaced by
       message)
...
[many more options]

Here are some of the most important options that you can set in the configuration
file, or as command-line parameters to bitcoind:

alertnotify

Run a specified command or script to send emergency alerts to the owner of this
node.

conf

An alternative location for the configuration file. This only makes sense as a
command-line parameter to bitcoind, as it can’t be inside the configuration file
it refers to.

datadir

Select the directory and filesystem in which to put all the blockchain data. By
default this is the .bitcoin subdirectory of your home directory. Depending on
your configuration, this can use from about 10 GB to almost 1 TB as of this writ‐
ing, with the maximum size expected to increase by several hundred gigabytes
per year.

prune

Reduce the blockchain disk space requirements to this many megabytes by
deleting old blocks. Use this on a resource-constrained node that can’t fit the
full blockchain. Other parts of the system will use other disk space that can’t
currently be pruned, so you will still need at least the minimum amount of space
mentioned in the datadir option.

txindex

Maintain an index of all transactions. This allows you to programmatically
retrieve any transaction by its ID provided that the block containing that transac‐
tion hasn’t been pruned.
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dbcache

The size of the UTXO cache. The default is 450 mebibytes (MiB). Increase this
size on high-end hardware to read and write from your disk less often, or reduce
the size on low-end hardware to save memory at the expense of using your disk
more frequently.

blocksonly

Minimize your bandwidth usage by only accepting blocks of confirmed transac‐
tions from your peers instead of relaying unconfirmed transactions.

maxmempool

Limit the transaction memory pool to this many megabytes. Use it to reduce
memory use on memory-constrained nodes.

Transaction Database Index and txindex Option
By default, Bitcoin Core builds a database containing only the transactions related to
the user’s wallet. If you want to be able to access any transaction with commands like
getrawtransaction (see “Exploring and Decoding Transactions” on page 43), you
need to configure Bitcoin Core to build a complete transaction index, which can be
achieved with the txindex option. Set txindex=1 in the Bitcoin Core configuration
file. If you don’t set this option at first and later set it to full indexing, you need to wait
for it to rebuild the index.

Example 3-1 shows how you might combine the preceding options with a fully
indexed node, running as an API backend for a bitcoin application.

Example 3-1. Sample configuration of a full-index node

alertnotify=myemailscript.sh "Alert: %s"
datadir=/lotsofspace/bitcoin
txindex=1

Example 3-2 shows a resource-constrained node running on a smaller server.

Example 3-2. Sample configuration of a resource-constrained system

alertnotify=myemailscript.sh "Alert: %s"
blocksonly=1
prune=5000
dbcache=150
maxmempool=150
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After you’ve edited the configuration file and set the options that best represent your
needs, you can test bitcoind with this configuration. Run Bitcoin Core with the
option printtoconsole to run in the foreground with output to the console:

$ bitcoind -printtoconsole
2023-01-28T03:43:39Z Bitcoin Core version v24.0.1
2023-01-28T03:43:39Z Using the 'x86_shani(1way,2way)' SHA256 implementation
2023-01-28T03:43:39Z Using RdSeed as an additional entropy source
2023-01-28T03:43:39Z Using RdRand as an additional entropy source
2023-01-28T03:43:39Z Default data directory /home/harding/.bitcoin
2023-01-28T03:43:39Z Using data directory /lotsofspace/bitcoin
2023-01-28T03:43:39Z Config file: /home/harding/.bitcoin/bitcoin.conf
2023-01-28T03:43:39Z Config file arg: [main] blockfilterindex="1"
2023-01-28T03:43:39Z Config file arg: [main] maxuploadtarget="1000"
2023-01-28T03:43:39Z Config file arg: [main] txindex="1"
2023-01-28T03:43:39Z Setting file arg: wallet = ["msig0"]
2023-01-28T03:43:39Z Command-line arg: printtoconsole=""
2023-01-28T03:43:39Z Using at most 125 automatic connections
2023-01-28T03:43:39Z Using 16 MiB out of 16 MiB requested for signature cache
2023-01-28T03:43:39Z Using 16 MiB out of 16 MiB requested for script execution
2023-01-28T03:43:39Z Script verification uses 3 additional threads
2023-01-28T03:43:39Z scheduler thread start
2023-01-28T03:43:39Z [http] creating work queue of depth 16
2023-01-28T03:43:39Z Using random cookie authentication.
2023-01-28T03:43:39Z Generated RPC cookie /lotsofspace/bitcoin/.cookie
2023-01-28T03:43:39Z [http] starting 4 worker threads
2023-01-28T03:43:39Z Using wallet directory /lotsofspace/bitcoin/wallets
2023-01-28T03:43:39Z init message: Verifying wallet(s)…
2023-01-28T03:43:39Z Using BerkeleyDB version Berkeley DB 4.8.30
2023-01-28T03:43:39Z Using /16 prefix for IP bucketing
2023-01-28T03:43:39Z init message: Loading P2P addresses…
2023-01-28T03:43:39Z Loaded 63866 addresses from peers.dat  114ms
[... more startup messages ...]

You can hit Ctrl-C to interrupt the process once you are satisfied that it is loading the
correct settings and running as you expect.

To run Bitcoin Core in the background as a process, start it with the daemon option,
as bitcoind -daemon.

To monitor the progress and runtime status of your Bitcoin node, start it in daemon
mode and then use the command bitcoin-cli getblockchaininfo:

$ bitcoin-cli getblockchaininfo

{
  "chain": "main",
  "blocks": 0,
  "headers": 83999,
  "bestblockhash": "[...]19d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
  "difficulty": 1,
  "time": 1673379796,
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  "mediantime": 1231006505,
  "verificationprogress": 3.783041623201835e-09,
  "initialblockdownload": true,
  "chainwork": "[...]000000000000000000000000000000000000000000000100010001",
  "size_on_disk": 89087,
  "pruned": false,
  "warnings": ""
}

This shows a node with a blockchain height of 0 blocks and 83,999 headers. The node
first fetches the block headers from its peers in order to find the blockchain with the
most proof of work and afterward continues to download the full blocks, validating
them as it goes.

Once you are happy with the configuration options you have selected, you should
add Bitcoin Core to the startup scripts in your operating system, so that it runs
continuously and restarts when the operating system restarts. You will find a number
of example startup scripts for various operating systems in Bitcoin Core’s source
directory under contrib/init and a README.md file showing which system uses
which script.

Bitcoin Core API
Bitcoin Core implements a JSON-RPC interface that can also be accessed using
the command-line helper bitcoin-cli. The command line allows us to experiment
interactively with the capabilities that are also available programmatically via the API.
To start, invoke the help command to see a list of the available Bitcoin Core RPC
commands:

$ bitcoin-cli help
+== Blockchain ==
getbestblockhash
getblock "blockhash" ( verbosity )
getblockchaininfo
...
walletpassphrase "passphrase" timeout
walletpassphrasechange "oldpassphrase" "newpassphrase"
walletprocesspsbt "psbt" ( sign "sighashtype" bip32derivs finalize )

Each of these commands may take a number of parameters. To get additional help,
a detailed description, and information on the parameters, add the command name
after help. For example, to see help on the getblockhash RPC command:

$ bitcoin-cli help getblockhash
getblockhash height

Returns hash of block in best-block-chain at height provided.

Arguments:
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1. height    (numeric, required) The height index

Result:
"hex"    (string) The block hash

Examples:
> bitcoin-cli getblockhash 1000
> curl --user myusername --data-binary '{"jsonrpc": "1.0", "id": "curltest",
  "method": "getblockhash",
  "params": [1000]}' -H 'content-type: text/plain;' http://127.0.0.1:8332/

At the end of the help information you will see two examples of the RPC command,
using the bitcoin-cli helper or the HTTP client curl. These examples demonstrate
how you might call the command. Copy the first example and see the result:

$ bitcoin-cli getblockhash 1000
00000000c937983704a73af28acdec37b049d214adbda81d7e2a3dd146f6ed09

The result is a block hash, which is described in more detail in the following chapters.
But for now, this command should return the same result on your system, demon‐
strating that your Bitcoin Core node is running, is accepting commands, and has
information about block 1,000 to return to you.

In the next sections we will demonstrate some very useful RPC commands and their
expected output.

Getting Information on Bitcoin Core’s Status
Bitcoin Core provides status reports on different modules through the JSON-RPC
interface. The most important commands include getblockchaininfo, getmempool
info, getnetworkinfo, and getwalletinfo.

Bitcoin’s getblockchaininfo RPC command was introduced earlier. The getnetwork
info command displays basic information about the status of the Bitcoin network
node. Use bitcoin-cli to run it:

$ bitcoin-cli getnetworkinfo

{
  "version": 240001,
  "subversion": "/Satoshi:24.0.1/",
  "protocolversion": 70016,
  "localservices": "0000000000000409",
  "localservicesnames": [
    "NETWORK",
    "WITNESS",
    "NETWORK_LIMITED"
  ],
  "localrelay": true,
  "timeoffset": -1,
  "networkactive": true,
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  "connections": 10,
  "connections_in": 0,
  "connections_out": 10,
  "networks": [
    "...detailed information about all networks..."
  ],
  "relayfee": 0.00001000,
  "incrementalfee": 0.00001000,
  "localaddresses": [
  ],
  "warnings": ""
}

The data is returned in JavaScript Object Notation (JSON), a format that can easily be
“consumed” by all programming languages but is also quite human-readable. Among
this data we see the version numbers for the Bitcoin Core software and Bitcoin
protocol. We see the current number of connections and various information about
the Bitcoin network and the settings related to this node.

It will take some time, perhaps more than a day, for bitcoind to
catch up to the current blockchain height as it downloads blocks
from other Bitcoin nodes and validates every transaction in those
blocks—almost a billion transactions as of this writing. You can
check its progress using getblockchaininfo to see the number of
known blocks. The examples in the rest of this chapter assume
you’re at least at block 775,072. Because the security of Bitcoin
transactions depends on blocks, some of the information in the
following examples will change slightly depending on how many
blocks your node has.

Exploring and Decoding Transactions
In “Buying from an Online Store” on page 16, Alice made a purchase from Bob’s
store. Her transaction was recorded on the blockchain. Let’s use the API to retrieve
and examine that transaction by passing the transaction ID (txid) as a parameter:

$ bitcoin-cli getrawtransaction 466200308696215bbc949d5141a49a41\
38ecdfdfaa2a8029c1f9bcecd1f96177

01000000000101eb3ae38f27191aa5f3850dc9cad00492b88b72404f9da13569
8679268041c54a0100000000ffffffff02204e0000000000002251203b41daba
4c9ace578369740f15e5ec880c28279ee7f51b07dca69c7061e07068f8240100
000000001600147752c165ea7be772b2c0acb7f4d6047ae6f4768e0141cf5efe
2d8ef13ed0af21d4f4cb82422d6252d70324f6f4576b727b7d918e521c00b51b
e739df2f899c49dc267c0ad280aca6dab0d2fa2b42a45182fc83e81713010000
0000

Bitcoin Core API | 43



A transaction ID (txid) is not authoritative. Absence of a txid in
the blockchain does not mean the transaction was not processed.
This is known as “transaction malleability,” because transactions
can be modified prior to confirmation in a block, changing their
txids. After a transaction is included in a block, its txid cannot
change unless there is a blockchain reorganization where that block
is removed from the best blockchain. Reorganizations are rare after
a transaction has several confirmations.

The command getrawtransaction returns a serialized transaction in hexadecimal
notation. To decode that, we use the decoderawtransaction command, passing the
hex data as a parameter. You can copy the hex returned by getrawtransaction and
paste it as a parameter to decoderawtransaction:

$ bitcoin-cli decoderawtransaction 01000000000101eb3ae38f27191aa5f3850dc9cad0\
0492b88b72404f9da135698679268041c54a0100000000ffffffff02204e00000000000022512\
03b41daba4c9ace578369740f15e5ec880c28279ee7f51b07dca69c7061e07068f82401000000\
00001600147752c165ea7be772b2c0acb7f4d6047ae6f4768e0141cf5efe2d8ef13ed0af21d4f\
4cb82422d6252d70324f6f4576b727b7d918e521c00b51be739df2f899c49dc267c0ad280aca6\
dab0d2fa2b42a45182fc83e817130100000000

{
  "txid": "466200308696215bbc949d5141a49a4138ecdfdfaa2a8029c1f9bcecd1f96177",
  "hash": "f7cdbc7cf8b910d35cc69962e791138624e4eae7901010a6da4c02e7d238cdac",
  "version": 1,
  "size": 194,
  "vsize": 143,
  "weight": 569,
  "locktime": 0,
  "vin": [
    {
      "txid": "4ac541802679866935a19d4f40728bb89204d0cac90d85f3a51a19...aeb",
      "vout": 1,
      "scriptSig": {
        "asm": "",
        "hex": ""
      },
      "txinwitness": [
        "cf5efe2d8ef13ed0af21d4f4cb82422d6252d70324f6f4576b727b7d918e5...301"
      ],
      "sequence": 4294967295
    }
  ],
  "vout": [
    {
      "value": 0.00020000,
      "n": 0,
      "scriptPubKey": {
        "asm": "1 3b41daba4c9ace578369740f15e5ec880c28279ee7f51b07dca...068",
        "desc": "rawtr(3b41daba4c9ace578369740f15e5ec880c28279ee7f51b...6ev",
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        "hex": "51203b41daba4c9ace578369740f15e5ec880c28279ee7f51b07d...068",
        "address": "bc1p8dqa4wjvnt890qmfws83te0v3qxzsfu7ul63kp7u56w8q...5qn",
        "type": "witness_v1_taproot"
      }
    },
    {
      "value": 0.00075000,
      "n": 1,
      "scriptPubKey": {
        "asm": "0 7752c165ea7be772b2c0acb7f4d6047ae6f4768e",
        "desc": "addr(bc1qwafvze0200nh9vkq4jmlf4sy0tn0ga5w0zpkpg)#qq404gts",
        "hex": "00147752c165ea7be772b2c0acb7f4d6047ae6f4768e",
        "address": "bc1qwafvze0200nh9vkq4jmlf4sy0tn0ga5w0zpkpg",
        "type": "witness_v0_keyhash"
      }
    }
  ]
}

The transaction decode shows all the components of this transaction, including the
transaction inputs and outputs. In this case we see that the transaction used one
input and generated two outputs. The input to this transaction was the output from
a previously confirmed transaction (shown as the input txid). The two outputs
correspond to the payment to Bob and the change back to Alice.

We can further explore the blockchain by examining the previous transaction
referenced by its txid in this transaction using the same commands (e.g.,
getrawtransaction). Jumping from transaction to transaction, we can follow a chain
of transactions back as the coins are transmitted from one owner to the next.

Exploring Blocks
Exploring blocks is similar to exploring transactions. However, blocks can be refer‐
enced either by the block height or by the block hash. First, let’s find a block by
its height. We use the getblockhash command, which takes the block height as the
parameter and returns the block header hash for that block:

$ bitcoin-cli getblockhash 123456
0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682ff6cd83c3ca

Now that we know the header hash for our chosen block, we can query that block. We
use the getblock command with the block hash as the parameter:

$ bitcoin-cli getblock 0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682f\
f6cd83c3ca

{
  "hash": "0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682ff6cd83c3ca",
  "confirmations": 651742,
  "height": 123456,
  "version": 1,
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  "versionHex": "00000001",
  "merkleroot": "0e60651a9934e8f0decd1c[...]48fca0cd1c84a21ddfde95033762d86c",
  "time": 1305200806,
  "mediantime": 1305197900,
  "nonce": 2436437219,
  "bits": "1a6a93b3",
  "difficulty": 157416.4018436489,
  "chainwork": "[...]00000000000000000000000000000000000000541788211ac227bc",
  "nTx": 13,
  "previousblockhash": "[...]60bc96a44724fd72daf9b92cf8ad00510b5224c6253ac40095",
  "nextblockhash": "[...]00129f5f02be247070bf7334d3753e4ddee502780c2acaecec6d66",
  "strippedsize": 4179,
  "size": 4179,
  "weight": 16716,
  "tx": [
    "5b75086dafeede555fc8f9a810d8b10df57c46f9f176ccc3dd8d2fa20edd685b",
    "e3d0425ab346dd5b76f44c222a4bb5d16640a4247050ef82462ab17e229c83b4",
    "137d247eca8b99dee58e1e9232014183a5c5a9e338001a0109df32794cdcc92e",
    "5fd167f7b8c417e59106ef5acfe181b09d71b8353a61a55a2f01aa266af5412d",
    "60925f1948b71f429d514ead7ae7391e0edf965bf5a60331398dae24c6964774",
    "d4d5fc1529487527e9873256934dfb1e4cdcb39f4c0509577ca19bfad6c5d28f",
    "7b29d65e5018c56a33652085dbb13f2df39a1a9942bfe1f7e78e97919a6bdea2",
    "0b89e120efd0a4674c127a76ff5f7590ca304e6a064fbc51adffbd7ce3a3deef",
    "603f2044da9656084174cfb5812feaf510f862d3addcf70cacce3dc55dab446e",
    "9a4ed892b43a4df916a7a1213b78e83cd83f5695f635d535c94b2b65ffb144d3",
    "dda726e3dad9504dce5098dfab5064ecd4a7650bfe854bb2606da3152b60e427",
    "e46ea8b4d68719b65ead930f07f1f3804cb3701014f8e6d76c4bdbc390893b94",
    "864a102aeedf53dd9b2baab4eeb898c5083fde6141113e0606b664c41fe15e1f"
  ]
}

The confirmations entry tells us the depth of this block—how many blocks have
been built on top of it, indicating the difficulty of changing any of the transactions
in this block. The height tells us how many blocks preceeded this block. We see the
block’s version, the time it was created (according to its miner), the median time of
the 11 blocks that precede this block (a time measurement that’s harder for miners
to manipulate), and the size of the block in three different measurements (its legacy
stripped size, its full size, and its size in weight units). We also see some fields used for
security and proof of work (merkle root, nonce, bits, difficulty, and chainwork); we’ll
examine those in detail in Chapter 12.

Using Bitcoin Core’s Programmatic Interface
The bitcoin-cli helper is very useful for exploring the Bitcoin Core API and testing
functions. But the whole point of an API is to access functions programmatically. In
this section we will demonstrate accessing Bitcoin Core from another program.

Bitcoin Core’s API is a JSON-RPC interface. JSON is a very convenient way to
present data that both humans and programs can easily read. RPC stands for remote
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procedure call, which means that we are calling procedures (functions) that are
remote (on the Bitcoin Core node) via a network protocol. In this case, the network
protocol is HTTP.

When we used the bitcoin-cli command to get help on a command, it showed us
an example of using curl, the versatile command-line HTTP client to construct one
of these JSON-RPC calls:

$ curl --user myusername --data-binary '{"jsonrpc": "1.0", "id":"curltest",
  "method": "getblockchaininfo",
  "params": [] }' -H 'content-type: text/plain;' http://127.0.0.1:8332/

This command shows that curl submits an HTTP request to the local host
(127.0.0.1), connecting to the default Bitcoin RPC port (8332), and submitting a
jsonrpc request for the getblockchaininfo method using text/plain encoding.

You might notice that curl will ask for credentials to be sent along with the request.
Bitcoin Core will create a random password on each start and place it in the data
directory under the name .cookie. The bitcoin-cli helper can read this password
file given the data directory. Similarly, you can copy the password and pass it to curl
(or any higher-level Bitcoin Core RPC wrappers), as seen in Example 3-3.

Example 3-3. Using cookie-based authentication with Bitcoin Core

$ cat .bitcoin/.cookie
  __cookie__:17c9b71cef21b893e1a019f4bc071950c7942f49796ed061b274031b17b19cd0

$ curl
  --user __cookie__:17c9b71cef21b893e1a019f4bc071950c7942f49796ed061b274031b17b19cd0
  --data-binary '{"jsonrpc": "1.0", "id":"curltest",
  "method": "getblockchaininfo",
  "params": [] }' -H 'content-type: text/plain;' http://127.0.0.1:8332/

{"result":{"chain":"main","blocks":799278,"headers":799278,
"bestblockhash":"000000000000000000018387c50988ec705a95d6f765b206b6629971e6978879",
"difficulty":53911173001054.59,"time":1689703111,"mediantime":1689701260,
"verificationprogress":0.9999979206082515,"initialblockdownload":false,
"chainwork":"00000000000000000000000000000000000000004f3e111bf32bcb47f9dfad5b",
"size_on_disk":563894577967,"pruned":false,"warnings":""},"error":null,
"id":"curltest"}

Alternatively, you can create a static password with the helper script provided
in ./share/rpcauth/rpcauth.py in Bitcoin Core’s source directory.

If you’re implementing a JSON-RPC call in your own program, you can use a generic
HTTP library to construct the call, similar to what is shown in the preceding curl
example.
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However, there are libraries in most popular programming languages that “wrap”
the Bitcoin Core API in a way that makes this a lot simpler. We will use the python-
bitcoinlib library to simplify API access. This library is not part of the Bitcoin
Core project and needs to be installed the usual way you install Python libraries.
Remember, this requires you to have a running Bitcoin Core instance, which will be
used to make JSON-RPC calls.

The Python script in Example 3-4 makes a simple getblockchaininfo call and prints
the block parameter from the data returned by Bitcoin Core.

Example 3-4. Running getblockchaininfo via Bitcoin Core’s JSON-RPC API

from bitcoin.rpc import RawProxy

# Create a connection to local Bitcoin Core node
p = RawProxy()

# Run the getblockchaininfo command, store the resulting data in info
info = p.getblockchaininfo()

# Retrieve the 'blocks' element from the info
print(info['blocks'])

Running it gives us the following result:

$ python rpc_example.py
773973

It tells us how many blocks our local Bitcoin Core node has in its blockchain. Not
a spectacular result, but it demonstrates the basic use of the library as a simplified
interface to Bitcoin Core’s JSON-RPC API.

Next, let’s use the getrawtransaction and decodetransaction calls to retrieve the
details of Alice’s payment to Bob. In Example 3-5, we retrieve Alice’s transaction and
list the transaction’s outputs. For each output, we show the recipient address and
value. As a reminder, Alice’s transaction had one output paying Bob and one output
for change back to Alice.

Example 3-5. Retrieving a transaction and iterating its outputs

from bitcoin.rpc import RawProxy

p = RawProxy()

# Alice's transaction ID
txid = "466200308696215bbc949d5141a49a4138ecdfdfaa2a8029c1f9bcecd1f96177"

# First, retrieve the raw transaction in hex
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raw_tx = p.getrawtransaction(txid)

# Decode the transaction hex into a JSON object
decoded_tx = p.decoderawtransaction(raw_tx)

# Retrieve each of the outputs from the transaction
for output in decoded_tx['vout']:
    print(output['scriptPubKey']['address'], output['value'])

Running this code, we get:

$ python rpc_transaction.py
bc1p8dqa4wjvnt890qmfws83te0v3qxzsfu7ul63kp7u56w8qc0qwp5qv995qn 0.00020000
bc1qwafvze0200nh9vkq4jmlf4sy0tn0ga5w0zpkpg 0.00075000

Both of the preceding examples are rather simple. You don’t really need a program
to run them; you could just as easily use the bitcoin-cli helper. The next example,
however, requires several hundred RPC calls and more clearly demonstrates the use
of a programmatic interface.

In Example 3-6, we first retrieve a block, then retrieve each of the transactions
within it by reference to each transaction ID. Next, we iterate through each of the
transaction’s outputs and add up the value.

Example 3-6. Retrieving a block and adding all the transaction outputs

from bitcoin.rpc import RawProxy

p = RawProxy()

# The block height where Alice's transaction was recorded
blockheight = 775072

# Get the block hash of the block at the given height
blockhash = p.getblockhash(blockheight)

# Retrieve the block by its hash
block = p.getblock(blockhash)

# Element tx contains the list of all transaction IDs in the block
transactions = block['tx']

block_value = 0

# Iterate through each transaction ID in the block
for txid in transactions:
    tx_value = 0
    # Retrieve the raw transaction by ID
    raw_tx = p.getrawtransaction(txid)
    # Decode the transaction
    decoded_tx = p.decoderawtransaction(raw_tx)
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    # Iterate through each output in the transaction
    for output in decoded_tx['vout']:
        # Add up the value of each output
        tx_value = tx_value + output['value']

    # Add the value of this transaction to the total
    block_value = block_value + tx_value

print("Total value in block: ", block_value)

Running this code, we get:

$ python rpc_block.py

Total value in block:  10322.07722534

Our example code calculates that the total value transacted in this block is
10,322.07722534 BTC (including 25 BTC reward and 0.0909 BTC in fees). Compare
that to the amount reported by a block explorer site by searching for the block hash
or height. Some block explorers report the total value excluding the reward and
excluding the fees. See if you can spot the difference.

Alternative Clients, Libraries, and Toolkits
There are many alternative clients, libraries, toolkits, and even full-node implementa‐
tions in the Bitcoin ecosystem. These are implemented in a variety of programming
languages, offering programmers native interfaces in their preferred language.

The following sections list some of the best libraries, clients, and toolkits, organized
by programming languages.

C/C++
Bitcoin Core

The reference implementation of Bitcoin

JavaScript
bcoin

A modular and scalable full-node implementation with API

Bitcore
Full node, API, and library by Bitpay

BitcoinJS
A pure JavaScript Bitcoin library for node.js and browsers
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Java
bitcoinj

A Java full-node client library

Python
python-bitcoinlib

A Python bitcoin library, consensus library, and node by Peter Todd

pycoin
A Python bitcoin library by Richard Kiss

Go
btcd

A Go language, full-node Bitcoin client

Rust
rust-bitcoin

Rust bitcoin library for serialization, parsing, and API calls

Scala
bitcoin-s

A Bitcoin implementation in Scala

C#
NBitcoin

Comprehensive bitcoin library for the .NET framework

Many more libraries exist in a variety of other programming languages, and more are
created all the time.

If you followed the instructions in this chapter, you now have Bitcoin Core running
and have begun exploring the network and blockchain using your own full node.
From now on you can independently use software you control—on a computer
you control—to verify that any bitcoins you receive follow every rule in the Bitcoin
system without having to trust any outside authority. In the coming chapters, we’ll
learn more about the rules of the system and how your node and your wallet use
them to secure your money, protect your privacy, and make spending and receiving
convenient.
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CHAPTER 4

Keys and Addresses

Alice wants to pay Bob, but the thousands of Bitcoin full nodes who will verify her
transaction don’t know who Alice or Bob are—and we want to keep it that way to
protect their privacy. Alice needs to communicate that Bob should receive some of
her bitcoins without tying any aspect of that transaction to Bob’s real-world identity
or to other Bitcoin payments that Bob receives. The method Alice uses must ensure
that only Bob can further spend the bitcoins he receives.

The original Bitcoin paper describes a very simple scheme for achieving those goals,
shown in Figure 4-1.

Figure 4-1. Transaction chain from original Bitcoin paper.

A receiver like Bob accepts bitcoins to a public key in a transaction that is signed
by the spender (like Alice). The bitcoins that Alice is spending had been previously
received to one of her public keys, and she uses the corresponding private key to
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generate her signature. Full nodes can verify that Alice’s signature commits to the out‐
put of a hash function that itself commits to Bob’s public key and other transaction
details.

We’ll examine public keys, private keys, signatures, and hash functions in this chapter,
and then use all of them together to describe the addresses used by modern Bitcoin
software.

Public Key Cryptography
Public key cryptography was invented in the 1970s and is a mathematical foundation
for modern computer and information security.

Since the invention of public key cryptography, several suitable mathematical func‐
tions, such as prime number exponentiation and elliptic curve multiplication, have
been discovered. These mathematical functions are easy to calculate in one direction
and infeasible to calculate in the opposite direction using the computers and algo‐
rithms available today. Based on these mathematical functions, cryptography enables
the creation of unforgeable digital signatures. Bitcoin uses elliptic curve addition and
multiplication as the basis for its cryptography.

In Bitcoin, we can use public key cryptography to create a key pair that controls
access to bitcoins. The key pair consists of a private key and a public key derived from
the private key. The public key is used to receive funds, and the private key is used to
sign transactions to spend the funds.

There is a mathematical relationship between the public and the private key that
allows the private key to be used to generate signatures on messages. These signatures
can be validated against the public key without revealing the private key.

In some wallet implementations, the private and public keys are
stored together as a key pair for convenience. However, the public
key can be calculated from the private key, so storing only the
private key is also possible.

A Bitcoin wallet contains a collection of key pairs, each consisting of a private key
and a public key. The private key (k) is a number, usually derived from a number
picked at random. From the private key, we use elliptic curve multiplication, a
one-way cryptographic function, to generate a public key (K).
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Why Use Asymmetric Cryptography (Public/Private Keys)?
Why is asymmetric cryptography used in Bitcoin? It’s not used to “encrypt” (make
secret) the transactions. Rather, a useful property of asymmetric cryptography is the
ability to generate digital signatures. A private key can be applied to a transaction
to produce a numerical signature. This signature can only be produced by someone
with knowledge of the private key. However, anyone with access to the public key
and the transaction can use them to verify the signature. This useful property of
asymmetric cryptography makes it possible for anyone to verify every signature on
every transaction, while ensuring that only the owners of private keys can produce
valid signatures.

Private Keys
A private key is simply a number, picked at random. Control over the private key
is the root of user control over all funds associated with the corresponding Bitcoin
public key. The private key is used to create signatures that are used to spend bitcoins
by proving control of funds used in a transaction. The private key must remain secret
at all times because revealing it to third parties is equivalent to giving them control
over the bitcoins secured by that key. The private key must also be backed up and
protected from accidental loss because if it’s lost, it cannot be recovered and the funds
secured by it are forever lost too.

A Bitcoin private key is just a number. You can pick your private
keys randomly using just a coin, pencil, and paper: toss a coin 256
times and you have the binary digits of a random private key you
can use in a Bitcoin wallet. The public key can then be generated
from the private key. Be careful, though, as any process that’s less
than completely random can significantly reduce the security of
your private key and the bitcoins it controls.

The first and most important step in generating keys is to find a secure source of
randomness (which computer scientists call entropy). Creating a Bitcoin key is almost
the same as “Pick a number between 1 and 2256.” The exact method you use to pick
that number does not matter as long as it is not predictable or repeatable. Bitcoin
software uses cryptographically secure random number generators to produce 256
bits of entropy.
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More precisely, the private key can be any number between 0 and n - 1 inclusive,
where n is a constant (n = 1.1578 × 1077, slightly less than 2256) defined as the order
of the elliptic curve used in Bitcoin (see “Elliptic Curve Cryptography Explained”
on page 56). To create such a key, we randomly pick a 256-bit number and check
that it is less than n. In programming terms, this is usually achieved by feeding
a larger string of random bits, collected from a cryptographically secure source of
randomness, into the SHA256 hash algorithm, which will conveniently produce a
256-bit value that can be interpreted as a number. If the result is less than n, we have a
suitable private key. Otherwise, we simply try again with another random number.

Do not write your own code to create a random number or use a
“simple” random number generator offered by your programming
language. Use a cryptographically secure pseudorandom number
generator (CSPRNG) with a seed from a source of sufficient
entropy. Study the documentation of the random number genera‐
tor library you choose to make sure it is cryptographically secure.
Correct implementation of the CSPRNG is critical to the security of
the keys.

The following is a randomly generated private key (k) shown in hexadecimal format
(256 bits shown as 64 hexadecimal digits, each 4 bits):

1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD

The size of Bitcoin’s private key space (2256) is an unfathomably
large number. It is approximately 1077 in decimal. For comparison,
the visible universe is estimated to contain 1080 atoms.

Elliptic Curve Cryptography Explained
Elliptic curve cryptography (ECC) is a type of asymmetric or public key cryptography
based on the discrete logarithm problem as expressed by addition and multiplication
on the points of an elliptic curve.

Figure 4-2 is an example of an elliptic curve, similar to that used by Bitcoin.
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Figure 4-2. An elliptic curve.

Bitcoin uses a specific elliptic curve and set of mathematical constants, as defined in
a standard called secp256k1, established by the National Institute of Standards and
Technology (NIST). The secp256k1 curve is defined by the following function, which
produces an elliptic curve:

y2 = x3 + 7 over Fp

or

y2 mod p = x3 + 7 mod p

The mod p (modulo prime number p) indicates that this curve is over a finite field of
prime order p, also written as Fp, where p = 2256 – 232 – 29 – 28 – 27 – 26 – 24 – 1, a very
large prime number.

Because this curve is defined over a finite field of prime order instead of over the real
numbers, it looks like a pattern of dots scattered in two dimensions, which makes
it difficult to visualize. However, the math is identical to that of an elliptic curve
over real numbers. As an example, Figure 4-3 shows the same elliptic curve over a
much smaller finite field of prime order 17, showing a pattern of dots on a grid. The
secp256k1 Bitcoin elliptic curve can be thought of as a much more complex pattern
of dots on a unfathomably large grid.
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Figure 4-3. Elliptic curve cryptography: visualizing an elliptic curve over F(p), with
p=17.

So, for example, the following is a point P with coordinates (x, y) that is a point on the
secp256k1 curve:

P =
(55066263022277343669578718895168534326250603453777594175500187360389116729240,
32670510020758816978083085130507043184471273380659243275938904335757337482424)

Example 4-1 shows how you can check this yourself using Python.

Example 4-1. Using Python to confirm that this point is on the elliptic curve

Python 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
> p = 115792089237316195423570985008687907853269984665640564039457584007908834671663
> x = 55066263022277343669578718895168534326250603453777594175500187360389116729240
> y = 32670510020758816978083085130507043184471273380659243275938904335757337482424
> (x ** 3 + 7 - y**2) % p
0
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In elliptic curve math, there is a point called the “point at infinity,” which roughly
corresponds to the role of zero in addition. On computers, it’s sometimes represented
by x = y = 0 (which doesn’t satisfy the elliptic curve equation, but it’s an easy separate
case that can be checked).

There is also a + operator, called “addition,” which has some properties similar to
the traditional addition of real numbers that gradeschool children learn. Given two
points P1 and P2 on the elliptic curve, there is a third point P3 = P1 + P2, also on the
elliptic curve.

Geometrically, this third point P3 is calculated by drawing a line between P1 and P2.
This line will intersect the elliptic curve in exactly one additional place. Call this point
P3' = (x, y). Then reflect in the x-axis to get P3 = (x, –y).

There are a couple of special cases that explain the need for the “point at infinity.”

If P1 and P2 are the same point, the line “between” P1 and P2 should extend to be the
tangent on the curve at this point P1. This tangent will intersect the curve in exactly
one new point. You can use techniques from calculus to determine the slope of the
tangent line. These techniques curiously work, even though we are restricting our
interest to points on the curve with two integer coordinates!

In some cases (i.e., if P1 and P2 have the same x values but different y values), the
tangent line will be exactly vertical, in which case P3 = “point at infinity.”

If P1 is the “point at infinity,” then P1 + P2 = P2. Similarly, if P2 is the point at infinity,
then P1 + P2 = P1. This shows how the point at infinity plays the role of zero.

It turns out that + is associative, which means that (A + B) + C = A + (B + C). That
means we can write A + B + C without parentheses and without ambiguity.

Now that we have defined addition, we can define multiplication in the standard way
that extends addition. For a point P on the elliptic curve, if k is a whole number, then
kP = P + P + P + … + P (k times). Note that k is sometimes confusingly called an
“exponent” in this case.

Public Keys
The public key is calculated from the private key using elliptic curve multiplication,
which is irreversible: K = k × G, where k is the private key, G is a constant point called
the generator point, and K is the resulting public key. The reverse operation, known
as “finding the discrete logarithm”—calculating k if you know K—is as difficult as
trying all possible values of k (i.e., a brute-force search). Before we demonstrate how
to generate a public key from a private key, let’s look at elliptic curve cryptography in
a bit more detail.
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Elliptic curve multiplication is a type of function that cryptogra‐
phers call a “trap door” function: it is easy to do in one direction
(multiplication) and impossible to do in the reverse direction (divi‐
sion). Someone with a private key can easily create the public key
and then share it with the world knowing that no one can reverse
the function and calculate the private key from the public key. This
mathematical trick becomes the basis for unforgeable and secure
digital signatures that prove control over bitcoin funds.

Starting with a private key in the form of a randomly generated number k, we
multiply it by a predetermined point on the curve called the generator point G to
produce another point somewhere else on the curve, which is the corresponding
public key K. The generator point is specified as part of the secp256k1 standard and
is always the same for all keys in bitcoin:

K = k × G

where k is the private key, G is the generator point, and K is the resulting public key,
a point on the curve. Because the generator point is always the same for all Bitcoin
users, a private key k multiplied with G will always result in the same public key K.
The relationship between k and K is fixed but can only be calculated in one direction,
from k to K. That’s why a Bitcoin public key (K) can be shared with anyone and does
not reveal the user’s private key (k).

A private key can be converted into a public key, but a public key
cannot be converted back into a private key because the math only
works one way.

Implementing the elliptic curve multiplication, we take the private key k generated
previously and multiply it with the generator point G to find the public key K:

K = 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD × G

Public key K is defined as a point K = (x, y):

K = x, y

where,

x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

To visualize multiplication of a point with an integer, we will use the simpler elliptic
curve over real numbers—remember, the math is the same. Our goal is to find the
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multiple kG of the generator point G, which is the same as adding G to itself, k
times in a row. In elliptic curves, adding a point to itself is the equivalent of drawing
a tangent line on the point and finding where it intersects the curve again, then
reflecting that point on the x-axis.

Figure 4-4 shows the process for deriving G, 2G, 4G, as a geometric operation on the
curve.

Many Bitcoin implementations use the libsecp256k1 cryptographic
library to do the elliptic curve math.

Figure 4-4. Elliptic curve cryptography: visualizing the multiplication of a point G by an
integer k on an elliptic curve.

Output and Input Scripts
Although the illustration from the original Bitcoin paper, Figure 4-1, shows public
keys (pubkeys) and signatures (sigs) being used directly, the first version of Bitcoin
instead had payments sent to a field called output script and had spends of those bit‐
coins authorized by a field called input script. These fields allow additional operations
to be performed in addition to (or instead of) verifying that a signature corresponds
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to a public key. For example, an output script can contain two public keys and require
two corresponding signatures be placed in the spending input script.

Later, in “Transaction Scripts and Script Language” on page 143, we’ll learn about
scripts in detail. For now, all we need to understand is that bitcoins are received to
an output script that acts like a public key, and bitcoin spending is authorized by an
input script that acts like a signature.

IP Addresses: The Original Address for Bitcoin (P2PK)
We’ve established that Alice can pay Bob by assigning some of her bitcoins to one of
Bob’s public keys. But how does Alice get one of Bob’s public keys? Bob could just
give her a copy, but let’s look again at the public key we worked with in “Public Keys”
on page 59. Notice that it’s quite long. Imagine Bob trying to read that to Alice over
the phone:

x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Instead of direct public key entry, the earliest version of Bitcoin software allowed
a spender to enter the receiver’s IP address, as shown in Figure 4-5. This feature
was later removed—there are many problems with using IP addresses—but a quick
description of it will help us better understand why certain features may have been
added to the Bitcoin protocol.

Figure 4-5. Early send screen for Bitcoin via The Internet Archive.

If Alice entered Bob’s IP address in Bitcoin 0.1, her full node would establish a
connection with his full node and receive a new public key from Bob’s wallet that his
node had never previously given anyone. This being a new public key was important
to ensure that different transactions paying Bob couldn’t be connected together by
someone looking at the blockchain and noticing that all of the transactions paid the
same public key.
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Using the public key her node received from Bob’s node, Alice’s wallet would con‐
struct a transaction output paying a very simple output script:

<Bob's public key> OP_CHECKSIG

Bob would later be able to spend that output with an input script consisting entirely
of his signature:

<Bob's signature>

To figure out what an output and input script are doing, you can combine them
together (input script first) and then note that each piece of data (shown in angle
brackets) is placed at the top of a list of items, called a stack. When an operation code
(opcode) is encountered, it uses items from the stack, starting with the topmost items.
Let’s look at how that works by beginning with the combined script:

<Bob's signature> <Bob's public key> OP_CHECKSIG

For this script, Bob’s signature is put on the stack, then Bob’s public key is placed
on top of it. The OP_CHECKSIG operation consumes two elements, starting with the
public key and followed by the signature, removing them from the stack. It verifies
the signature corresponds to the public key and also commits to (signs) the various
fields in the transaction. If the signature is correct, OP_CHECKSIG replaces itself on the
stack with the value 1; if the signature was not correct, it replaces itself with a 0. If
there’s a nonzero item on top of the stack at the end of evaluation, the script passes. If
all scripts in a transaction pass, and all of the other details about the transaction are
valid, then full nodes will consider the transaction to be valid.

In short, the preceding script uses the same public key and signature described in the
original paper but adds in the complexity of two script fields and an opcode. That
seems like extra work here, but we’ll begin to see the benefits when we look at the
following section.

This type of output is known today as pay to public key, or P2PK for short. It was
never widely used for payments, and no widely used program has supported IP
address payments for almost a decade.

Legacy Addresses for P2PKH
Entering the IP address of the person you want to pay has a number of advantages,
but it also has a number of downsides. One particular downside is that the receiver
needs their wallet to be online at their IP address, and it needs to be accessible
from the outside world. For a lot of people, that isn’t an option. They turn their
computers off at night, their laptops go to sleep, they’re behind firewalls, or they’re
using Network Address Translation (NAT).
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This brings us back to the problem of receivers like Bob having to give spenders
like Alice a long public key. The shortest version of Bitcoin public keys known to
the developers of early Bitcoin were 65 bytes, the equivalent of 130 characters when
written in hexadecimal. However, Bitcoin already contains several data structures
much larger than 65 bytes that need to be securely referenced in other parts of Bitcoin
using the smallest amount of data that was secure.

Bitcoin accomplishes that with a hash function, a function that takes a potentially
large amount of data, scrambles it (hashes it), and outputs a fixed amount of data.
A cryptographic hash function will always produce the same output when given
the same input, and a secure function will also make it impractical for somebody
to choose a different input that produces a previously-seen output. That makes the
output a commitment to the input. It’s a promise that, in practice, only input x will
produce output X.

For example, imagine I want to ask you a question and also give you my answer
in a form that you can’t read immediately. Let’s say the question is, “in what year
did Satoshi Nakamoto start working on Bitcoin?” I’ll give you a commitment to my
answer in the form of output from the SHA256 hash function, the function most
commonly used in Bitcoin:

94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e

Later, after you tell me your guess to the answer of the question, I can reveal my
answer and prove to you that my answer, as input to the hash function, produces
exactly the same output I gave you earlier:

$ echo "2007.  He said about a year and a half before Oct 2008" | sha256sum
94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e

Now imagine that we ask Bob the question, “what is your public key?” Bob can use a
hash function to give us a cryptographically secure commitment to his public key. If
he later reveals his key, and we verify it produces the same commitment he previously
gave us, we can be sure it was the exact same key that was used to create that earlier
commitment.

The SHA256 hash function is considered to be very secure and produces 256 bits
(32 bytes) of output, less than half the size of original Bitcoin public keys. However,
there are other slightly less secure hash functions that produce smaller output, such
as the RIPEMD-160 hash function whose output is 160 bits (20 bytes). For reasons
Satoshi Nakamoto never stated, the original version of Bitcoin made commitments to
public keys by first hashing the key with SHA256 and then hashing that output with
RIPEMD-160; this produced a 20-byte commitment to the public key.
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We can look at that algorithmically. Starting with the public key K, we compute the
SHA256 hash and then compute the RIPEMD-160 hash of the result, producing a
160-bit (20-byte) number:

A = RIPEMD160 SHA256 K

where K is the public key and A is the resulting commitment.

Now that we understand how to make a commitment to a public key, we need to
figure out how to use it in a transaction. Consider the following output script:

OP_DUP OP_HASH160 <Bob's commitment> OP_EQUAL OP_CHECKSIG

And also the following input script:

<Bob's signature> <Bob's public key>

Together, they form the following script:

<sig> <pubkey> OP_DUP OP_HASH160 <commitment> OP_EQUALVERIFY OP_CHECKSIG

As we did in “IP Addresses: The Original Address for Bitcoin (P2PK)” on page 62, we
start putting items on the stack. Bob’s signature goes on first; his public key is then
placed on top of the stack. The OP_DUP operation duplicates the top item, so the top
and second-to-top item on the stack are now both Bob’s public key. The OP_HASH160
operation consumes (removes) the top public key and replaces it with the result of
hashing it with RIPEMD160(SHA256(K)), so now the top of the stack is a hash of Bob’s
public key. Next, the commitment to Bob’s public key is added to the top of the stack.
The OP_EQUALVERIFY operation consumes the top two items and verifies that they are
equal; that should be the case if the public key Bob provided in the input script is
the same public key used to create the commitment in the output script that Alice
paid. If OP_EQUALVERIFY fails, the whole script fails. Finally, we’re left with a stack
containing just Bob’s signature and his public key; the OP_CHECKSIG opcode verifies
they correspond with each other and that the signature commits to the transaction.

Although this process of paying to a public key hash (P2PKH) may seem convoluted,
it allows Alice’s payment to Bob to contain only a 20 byte commitment to his public
key instead of the key itself, which would’ve been 65 bytes in the original version of
Bitcoin. That’s a lot less data for Bob to have to communicate to Alice.

However, we haven’t yet discussed how Bob gets those 20 bytes from his Bitcoin
wallet to Alice’s wallet. There are commonly used encodings for byte values, such as
hexadecimal, but any mistake made in copying a commitment would result in the
bitcoins being sent to an unspendable output, causing them to be lost forever. In the
next section, we’ll look at compact encoding and reliable checksums.
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Base58check Encoding
In order to represent long numbers in a compact way, using fewer symbols, many
computer systems use mixed-alphanumeric representations with a base (or radix)
higher than 10. For example, whereas the traditional decimal system uses 10 numer‐
als, 0 through 9, the hexadecimal system uses 16, with the letters A through F as the
six additional symbols. A number represented in hexadecimal format is shorter than
the equivalent decimal representation. Even more compact, base64 representation
uses 26 lowercase letters, 26 capital letters, 10 numerals, and 2 more characters such
as “+” and “/” to transmit binary data over text-based media such as email.

Base58 is a similar encoding to base64, using upper- and lowercase letters and
numbers, but omitting some characters that are frequently mistaken for one another
and can appear identical when displayed in certain fonts. Specifically, base58 is base64
without the 0 (number zero), O (capital o), l (lower L), I (capital i), and the symbols
“+” and “/.” Or, more simply, it is a set of lowercase and capital letters and numbers
without the four (0, O, l, I) just mentioned. Example 4-2 shows the full base58
alphabet.

Example 4-2. Bitcoin’s base58 alphabet

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

To add extra security against typos or transcription errors, base58check includes a
checksum encoded in the base58 alphabet. The checksum is an additional four bytes
added to the end of the data that is being encoded. The checksum is derived from the
hash of the encoded data and can therefore be used to detect transcription and typing
errors. When presented with base58check code, the decoding software will calculate
the checksum of the data and compare it to the checksum included in the code. If the
two do not match, an error has been introduced and the base58check data is invalid.
This prevents a mistyped Bitcoin address from being accepted by the wallet software
as a valid destination, an error that would otherwise result in loss of funds.

To convert data (a number) into a base58check format, we first add a prefix to the
data, called the “version byte,” which serves to easily identify the type of data that is
encoded. For example, the prefix zero (0x00 in hex) indicates that the data should be
used as the commitment (hash) in a legacy P2PKH output script. A list of common
version prefixes is shown in Table 4-1.

Next, we compute the “double-SHA” checksum, meaning we apply the SHA256 hash-
algorithm twice on the previous result (the prefix concatenated with the data):

checksum = SHA256(SHA256(prefix||data))

66 | Chapter 4: Keys and Addresses



From the resulting 32-byte hash (hash-of-a-hash), we take only the first four bytes.
These four bytes serve as the error-checking code, or checksum. The checksum is
appended to the end.

The result is composed of three items: a prefix, the data, and a checksum. This result
is encoded using the base58 alphabet described previously. Figure 4-6 illustrates the
base58check encoding process.

Figure 4-6. Base58check encoding: a base58, versioned, and checksummed format for
unambiguously encoding bitcoin data.

In Bitcoin, other data besides public key commitments are presented to the user in
base58check encoding to make that data compact, easy to read, and easy to detect
errors. The version prefix in base58check encoding is used to create easily distinguishable
formats, which when encoded in base58 contain specific characters at the beginning of
the base58check-encoded payload. These characters make it easy for humans to identify
the type of data that is encoded and how to use it. This is what differentiates, for example,
a base58check-encoded Bitcoin address that starts with a 1 from a base58check-encoded
private key wallet import format (WIF) that starts with a 5. Some example version
prefixes and the resulting base58 characters are shown in Table 4-1.
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Table 4-1. Base58check version prefix and encoded result examples

Type Version prefix (hex) Base58 result prefix
Address for pay to public key hash (P2PKH) 0x00 1

Address for pay to script hash (P2SH) 0x05 3

Testnet Address for P2PKH 0x6F m or n

Testnet Address for P2SH 0xC4 2

Private Key WIF 0x80 5, K, or L

BIP32 Extended Public Key 0x0488B21E xpub

Combining public keys, hash-based commitments, and base58check encoding, Fig‐
ure 4-7 illustrates the conversion of a public key into a Bitcoin address.

Figure 4-7. Public key to Bitcoin address: conversion of a public key to a Bitcoin address.
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Compressed Public Keys
When Bitcoin was first authored, its developers only knew how to create 65-byte
public keys. However, a later developer became aware of an alternative encoding for
public keys that used only 33 bytes and which was backward compatible with all
Bitcoin full nodes at the time, so there was no need to change the Bitcoin protocol.
Those 33-byte public keys are known as compressed public keys, and the original
65-byte keys are known as uncompressed public keys. Using smaller public keys results
in smaller transactions, allowing more payments to be made in the same block.

As we saw in the section “Public Keys” on page 59, a public key is a point
(x, y) on an elliptic curve. Because the curve expresses a mathematical function,
a point on the curve represents a solution to the equation and, therefore, if we
know the x coordinate, we can calculate the y coordinate by solving the equation
y2 mod p = (x3 + 7) mod p. That allows us to store only the x coordinate of the public
key point, omitting the y coordinate and reducing the size of the key and the space
required to store it by 256 bits. An almost 50% reduction in size in every transaction
adds up to a lot of data saved over time!

Here is the public key generated by the private key we created in “Public Keys” on
page 59:

x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Here’s the same public key shown as a 520-bit number (130 hex digits) with the prefix
04 followed by x and then y coordinates, as 04 x y:

K = 04F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A\
    07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Whereas uncompressed public keys have a prefix of 04, compressed public keys start
with either a 02 or a 03 prefix. Let’s look at why there are two possible prefixes:
because the left side of the equation is y2, the solution for y is a square root, which can
have a positive or negative value. Visually, this means that the resulting y coordinate
can be above or below the x-axis. As you can see from the graph of the elliptic
curve in Figure 4-2, the curve is symmetric, meaning it is reflected like a mirror by
the x-axis. So, while we can omit the y coordinate, we have to store the sign of y
(positive or negative); in other words, we have to remember if it was above or below
the x-axis because each of those options represents a different point and a different
public key. When calculating the elliptic curve in binary arithmetic on the finite field
of prime order p, the y coordinate is either even or odd, which corresponds to the
positive/negative sign as explained earlier. Therefore, to distinguish between the two
possible values of y, we store a compressed public key with the prefix 02 if the y is
even, and 03 if it is odd, allowing the software to correctly deduce the y coordinate
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from the x coordinate and uncompress the public key to the full coordinates of the
point. Public key compression is illustrated in Figure 4-8.

Figure 4-8. Public key compression.

Here’s the same public key generated in “Public Keys” on page 59, shown as a
compressed public key stored in 264 bits (66 hex digits) with the prefix 03 indicating
the y coordinate is odd:

K = 03F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A

This compressed public key corresponds to the same private key, meaning it is
generated from the same private key. However, it looks different from the uncom‐
pressed public key. More importantly, if we convert this compressed public key to a
commitment using the HASH160 function (RIPEMD160(SHA256(K))), it will produce
a different commitment than the uncompressed public key, leading to a different
address. This can be confusing because it means that a single private key can produce
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a public key expressed in two different formats (compressed and uncompressed) that
produce two different Bitcoin addresses. However, the private key is identical for both
Bitcoin addresses.

Compressed public keys are now the default in almost all Bitcoin software and were
required when using certain new features added in later protocol upgrades.

However, some software still needs to support uncompressed public keys, such as a
wallet application importing private keys from an older wallet. When the new wallet
scans the blockchain for old P2PKH outputs and inputs, it needs to know whether
to scan the 65-byte keys (and commitments to those keys) or 33-byte keys (and their
commitments). Failure to scan for the correct type can lead to the user not being able
to spend their full balance. To resolve this issue, when private keys are exported from
a wallet, the WIF that is used to represent them is implemented slightly differently in
newer Bitcoin wallets to indicate that these private keys have been used to produce
compressed public keys.

Legacy Pay to Script Hash (P2SH)
As we’ve seen in preceding sections, someone receiving bitcoins (like Bob) can
require that payments to him contain certain constraints in their output script. Bob
will need to fulfill those constraints using an input script when he spends those
bitcoins. In “IP Addresses: The Original Address for Bitcoin (P2PK)” on page 62,
the constraint was simply that the input script needed to provide an appropriate
signature. In “Legacy Addresses for P2PKH” on page 63, an appropriate public key
also needed to be provided.

For a spender (like Alice) to place the constraints Bob wants in the output script she uses
to pay him, Bob needs to communicate those constraints to her. This is similar to the
problem of Bob needing to communicate his public key to her. Like that problem, where
public keys can be fairly large, the constraints Bob uses can also be quite large—potentially
thousands of bytes. That’s not only thousands of bytes that need to be communicated to
Alice, but thousands of bytes for which she needs to pay transaction fees every time she
wants to spend money to Bob. However, the solution of using hash functions to create small
commitments to large amounts of data also applies here.

The BIP16 upgrade to the Bitcoin protocol in 2012 allows an output script to commit
to a redemption script (redeem script). When Bob spends his bitcoins, his input script
needs to provide a redeem script that matches the commitment and also any data
necessary to satisfy the redeem script (such as signatures). Let’s start by imagining
Bob wants to require two signatures to spend his bitcoins, one signature from his
desktop wallet and one from a hardware signing device. He puts those conditions
into a redeem script:

<public key 1> OP_CHECKSIGVERIFY <public key 2> OP_CHECKSIG
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He then creates a commitment to the redeem script using the same HASH160 mech‐
anism used for P2PKH commitments, RIPEMD160(SHA256(script)). That commit‐
ment is placed into the output script using a special template:

OP_HASH160 <commitment> OP_EQUAL

When using pay to script hash (P2SH), you must use the specific
P2SH template with no extra data or conditions in the output
script. If the output script is not exactly OP_HASH160 <20 bytes>
OP_EQUAL, the redeem script will not be used and any bitcoins may
either be unspendable or spendable by anyone (meaning anyone
can take them).

When Bob goes to spend the payment he received to the commitment for his script,
he uses an input script that includes the redeem script, with it serialized as a single
data element. He also provides the signatures he needs to satisfy the redeem script,
putting them in the order that they will be consumed by the opcodes:

<signature2> <signature1> <redeem script>

When Bitcoin full nodes receive Bob’s spend, they’ll verify that the serialized redeem
script will hash to the same value as the commitment. Then they’ll replace it on the
stack with its deserialized value:

<signature2> <signature1> <pubkey1> OP_CHECKSIGVERIFY <pubkey2> OP_CHECKSIG

The script is executed and, if it passes and all of the other transaction details are
correct, the transaction is valid.

Addresses for P2SH are also created with base58check. The version prefix is set to 5,
which results in an encoded address starting with a 3. An example of a P2SH address
is 3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM.

P2SH is not necessarily the same as a multisignature transaction. A
P2SH address most often represents a multisignature script, but it
might also represent a script encoding other types of transactions.

P2PKH and P2SH are the only two script templates used with base58check encoding.
They are now known as legacy addresses and have become less common over time.
Legacy addresses were supplanted by the bech32 family of addresses.
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P2SH Collision Attacks
All addresses based on hash functions are theoretically vulnerable to an attacker
independently finding the same input that produced the hash function output (com‐
mitment). In the case of Bitcoin, if they find the input the same way the original user
did, they’ll know the user’s private key and be able to spend that user’s bitcoins. The
chance of an attacker independently generating the input for an existing commitment
is proportional to the strength of the hash algorithm. For a secure 160-bit algorithm
like HASH160, the probability is 1-in-2160. This is a preimage attack.

An attacker can also try to generate two different inputs (e.g., redeem scripts) that
produce the same commitment. For addresses created entirely by a single party, the
chance of an attacker generating a different input for an existing commitment is also
about 1-in-2160 for the HASH160 algorithm. This is a second preimage attack.

However, this changes when an attacker is able to influence the original input value.
For example, an attacker participates in the creation of a multisignature script where
they don’t need to submit their public key until after they learn all of the other partys’
public keys. In that case, the strength of hash algorithm is reduced to its square root.
For HASH160, the probability becomes 1-in-280. This is a collision attack.

To put those numbers in context, as of early 2023, all Bitcoin miners combined
execute about 280 hash functions every hour. They run a different hash function
than HASH160, so their existing hardware can’t create collision attacks for it, but the
existence of the Bitcoin network proves that collision attacks against 160-bit functions
like HASH160 are practical. Bitcoin miners have spent the equivalent of billions of
US dollars on special hardware, so creating a collision attack wouldn’t be cheap,
but there are organizations that expect to receive billions of dollars in bitcoins to
addresses generated by processes involving multiple parties, which could make the
attack profitable.

There are well-established cryptographic protocols for preventing collision attacks,
but a simple solution that doesn’t require any special knowledge on the part of
wallet developers is to simply use a stronger hash function. Later upgrades to Bitcoin
made that possible, and newer Bitcoin addresses provide at least 128 bits of collision
resistance. To perform 2128 hash operations would take all current Bitcoin miners
about 32 billion years.

Although we do not believe there is any immediate threat to anyone creating new
P2SH addresses, we recommend all new wallets use newer types of addresses to
eliminate address collision attacks as a concern.
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Bech32 Addresses
In 2017, the Bitcoin protocol was upgraded. When the upgrade is used, it prevents
transaction identifiers (txids) from being changed without the consent of a spending
user (or a quorum of signers when multiple signatures are required). The upgrade,
called segregated witness (or segwit for short), also provided additional capacity for
transaction data in blocks and several other benefits. However, users wanting direct
access to segwit’s benefits had to accept payments to new output scripts.

As mentioned in “Pay to Script Hash” on page 153, one of the advantages of the P2SH
output type was that a spender (such as Alice) didn’t need to know the details of the
script the receiver (such as Bob) used. The segwit upgrade was designed to use this
mechanism, allowing users to immediately begin accessing many of the new benefits
by using a P2SH address. But for Bob to gain access to all of the benefits, he would
need Alice’s wallet to pay him using a different type of script. That would require
Alice’s wallet to upgrade to support the new scripts.

At first, Bitcoin developers proposed BIP142, which would continue using
base58check with a new version byte, similar to the P2SH upgrade. But getting all
wallets to upgrade to new scripts with a new base58check version was expected to
require almost as much work as getting them to upgrade to an entirely new address
format, so several Bitcoin contributors set out to design the best possible address
format. They identified several problems with base58check:

• Its mixed-case presentation made it inconvenient to read aloud or transcribe. Try•
reading one of the legacy addresses in this chapter to a friend who you have tran‐
scribe it. Notice how you have to prefix every letter with the words “uppercase”
and “lowercase.” Also, note when you review their writing that the uppercase and
lowercase versions of some letters can look similar in many people’s handwriting.

• It can detect errors, but it can’t help users correct those errors. For example, if•
you accidentally transpose two characters when manually entering an address,
your wallet will almost certainly warn that a mistake exists, but it won’t help you
figure out where the error is located. It might take you several frustrating minutes
to eventually discover the mistake.

• A mixed-case alphabet also requires extra space to encode in QR codes, which•
are commonly used to share addresses and invoices between wallets. That extra
space means QR codes need to be larger at the same resolution or they become
harder to scan quickly.
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• It requires every spender wallet upgrade to support new protocol features like•
P2SH and segwit. Although the upgrades themselves might not require much
code, experience shows that many wallet authors are busy with other work and
can sometimes delay upgrading for years. This adversely affects everyone who
wants to use the new features.

The developers working on an address format for segwit found solutions for each of
these problems in a new address format called bech32 (pronounced with a soft “ch”, as
in “besh thirty-two”). The “bech” stands for BCH, the initials of the three individuals
who discovered the cyclic code in 1959 and 1960 upon which bech32 is based. The
“32” stands for the number of characters in the bech32 alphabet (similar to the 58 in
base58check):

• Bech32 uses only numbers and a single case of letters (preferably rendered in•
lowercase). Despite its alphabet being almost half the size of the base58check
alphabet, a bech32 address for a pay to witness public key hash (P2WPKH) script
is only slightly longer than a legacy address for an equivalent P2PKH script.

• Bech32 can both detect and help correct errors. In an address of an expected•
length, it is mathematically guaranteed to detect any error affecting four charac‐
ters or less; that’s more reliable than base58check. For longer errors, it will fail to
detect them less than one time in a billion, which is roughly the same reliability
as base58check. Even better, for an address typed with just a few errors, it can
tell the user where those errors occurred, allowing them to quickly correct minor
transcription mistakes. See Example 4-3 for an example of an address entered
with errors.

Example 4-3. Bech32 typo detection

Address:
bc1p9nh05ha8wrljf7ru236awn4t2x0d5ctkkywmv9sclnm4t0av2vgs4k3au7
Detected errors shown in bold and underlined. Generated using the bech32
address decoder demo.

• Bech32 is preferably written with only lowercase characters, but those lowercase•
characters can be replaced with uppercase characters before encoding an address
in a QR code. This allows the use of a special QR encoding mode that uses less
space. Notice the difference in size and complexity of the two QR codes for the
same address in Figure 4-9.
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Figure 4-9. The same bech32 address QR encoded in lowercase and uppercase.

• Bech32 takes advantage of an upgrade mechanism designed as part of segwit to•
make it possible for spender wallets to be able to pay output types that aren’t
in use yet. The goal was to allow developers to build a wallet today that allows
spending to a bech32 address and have that wallet remain able to spend to
bech32 addresses for users of new features added in future protocol upgrades.
It was hoped that we might never again need to go through the system-wide
upgrade cycles necessary to allow people to fully use P2SH and segwit.

Problems with Bech32 Addresses
Bech32 addresses would have been a success in every area except for one problem.
The mathematical guarantees about their ability to detect errors only apply if the
length of the address you enter into a wallet is the same length of the original address.
If you add or remove any characters during transcription, the guarantee doesn’t
apply and your wallet may spend funds to a wrong address. However, even without
the guarantee, it was thought that it would be very unlikely that a user adding or
removing characters would produce a string with a valid checksum, ensuring users’
funds were safe.

Unfortunately, the choice for one of the constants in the bech32 algorithm just
happened to make it very easy to add or remove the letter “q” in the penultimate
position of an address that ends with the letter “p.” In those cases, you can also add or
remove the letter “q” multiple times. This will be caught by the checksum some of the
time, but it will be missed far more often than the one-in-a-billion expectations for
bech32’s substitution errors. For an example, see Example 4-4.
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Example 4-4. Extending the length of bech32 address without invalidating its checksum

Intended bech32 address:
bc1pqqqsq9txsqp

Incorrect addresses with a valid checksum:
bc1pqqqsq9txsqqqqp
bc1pqqqsq9txsqqqqqqp
bc1pqqqsq9txsqqqqqqqqp
bc1pqqqsq9txsqqqqqqqqqp
bc1pqqqsq9txsqqqqqqqqqqqp

For the initial version of segwit (version 0), this wasn’t a practical concern. Only
two valid lengths were defined for v0 segwit outputs: 22 bytes and 34 bytes. Those
correspond to bech32 addresses that are 42 characters or 62 characters long, so
someone would need to add or remove the letter “q” from the penultimate position
of a bech32 address 20 times in order to send money to an invalid address without
a wallet being able to detect it. However, it would become a problem for users in the
future if a segwit-based upgrade were ever to be implemented.

Bech32m
Although bech32 worked well for segwit v0, developers didn’t want to unnecessarily
constrain output sizes in later versions of segwit. Without constraints, adding or
removing a single “q” in a bech32 address could result in a user accidentally sending
their money to an output that was either unspendable or spendable by anyone
(allowing those bitcoins to be taken by anyone). Developers exhaustively analyzed the
bech32 problem and found that changing a single constant in their algorithm would
eliminate the problem, ensuring that any insertion or deletion of up to five characters
will only fail to be detected less often than one time in a billion.

The version of bech32 with a single different constant is known as bech32 modified
(bech32m). All of the characters in bech32 and bech32m addresses for the same
underlying data will be identical except for the last six (the checksum). That means
a wallet will need to know which version is in use in order to validate the checksum,
but both address types contain an internal version byte that makes determining that
easy.

To work with both bech32 and bech32m, we’ll look at the encoding and parsing
rules for bech32m Bitcoin addresses since they encompass the ability to parse bech32
addresses and are the current recommended address format for Bitcoin wallets.

Bech32m addresses start with a human readable part (HRP). There are rules in
BIP173 for creating your own HRPs, but for Bitcoin you only need to know about the
HRPs already chosen, shown in Table 4-2.
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Table 4-2. Bech32 HRPs for Bitcoin

HRPs Network
bc Bitcoin mainnet

tb Bitcoin testnet

The HRP is followed by a separator, the number “1.” Earlier proposals for a protocol
separator used a colon but some operating systems and applications that allow a
user to double-click a word to highlight it for copy and pasting won’t extend the
highlighting to and past a colon. A number ensured double-click highlighting would
work with any program that supports bech32m strings in general (which include
other numbers). The number “1” was chosen because bech32 strings don’t otherwise
use it in order to prevent accidental transliteration between the number “1” and the
lowercase letter “l.”

The other part of a bech32m address is called the “data part.” There are three elements
to this part:

Witness version
A single byte that encodes as a single character in a bech32m Bitcoin address
immediately following the separator. This letter represents the segwit version.
The letter “q” is the encoding of “0” for segwit v0, the initial version of segwit
where bech32 addresses were introduced. The letter “p” is the encoding of “1”
for segwit v1 (also called taproot) where bech32m began to be used. There are
seventeen possible versions of segwit and it’s required for Bitcoin that the first
byte of a bech32m data part decode to the number 0 through 16 (inclusive).

Witness program
From 2 to 40 bytes. For segwit v0, this witness program must be either 20 or 32
bytes; no other length is valid. For segwit v1, the only defined length as of this
writing is 32 bytes but other lengths may be defined later.

Checksum
Exactly 6 characters. This is created using a BCH code, a type of error correction
code (although for Bitcoin addresses, we’ll see later that it’s essential to use the
checksum only for error detection—not correction).

Let’s illustrate these rules by walking through an example of creating bech32 and
bech32m addresses. For all of the following examples, we’ll use the bech32m refer‐
ence code for Python.

We’ll start by generating four output scripts, one for each of the different segwit
outputs in use at the time of publication, plus one for a future segwit version that
doesn’t yet have a defined meaning. The scripts are listed in Table 4-3.
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Table 4-3. Scripts for different types of segwit outputs

Output type Example script
P2WPKH OP_0 2b626ed108ad00a944bb2922a309844611d25468

P2WSH OP_0 648a32e50b6fb7c5233b228f60a6a2ca4158400268844c4bc295ed5e8c3d626f

P2TR OP_1 2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311

Future Example OP_16 0000

For the P2WPKH output, the witness program contains a commitment constructed
in exactly the same way as the commitment for a P2PKH output seen in “Legacy
Addresses for P2PKH” on page 63. A public key is passed into a SHA256 hash func‐
tion. The resultant 32-byte digest is then passed into a RIPEMD-160 hash function.
The digest of that function (the commitment) is placed in the witness program.

For the pay to witness script hash (P2WSH) output, we don’t use the P2SH algorithm.
Instead we take the script, pass it into a SHA256 hash function, and use the 32-byte
digest of that function in the witness program. For P2SH, the SHA256 digest was
hashed again with RIPEMD-160, but that may not be secure in some cases; for
details, see “P2SH Collision Attacks” on page 73. A result of using SHA256 without
RIPEMD-160 is that P2WSH commitments are 32 bytes (256 bits) instead of 20 bytes
(160 bits).

For the pay-to-taproot (P2TR) output, the witness program is a point on the
secp256k1 curve. It may be a simple public key, but in most cases it should be a public
key that commits to some additional data. We’ll learn more about that commitment
in “Taproot” on page 178.

For the example of a future segwit version, we simply use the highest possible segwit
version number (16) and the smallest allowed witness program (2 bytes) with a null value.

Now that we know the version number and the witness program, we can convert each
of them into a bech32 address. Let’s use the bech32m reference library for Python to
quickly generate those addresses, and then take a deeper look at what’s happening:

$ github="https://raw.githubusercontent.com"
$ wget $github/sipa/bech32/master/ref/python/segwit_addr.py

$ python
>>> from segwit_addr import *
>>> from binascii import unhexlify

>>> help(encode)
encode(hrp, witver, witprog)
    Encode a segwit address.

>>> encode('bc', 0, unhexlify('2b626ed108ad00a944bb2922a309844611d25468'))
'bc1q9d3xa5gg45q2j39m9y32xzvygcgay4rgc6aaee'
>>> encode('bc', 0,
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unhexlify('648a32e50b6fb7c5233b228f60a6a2ca4158400268844c4bc295ed5e8c3d626f'))
'bc1qvj9r9egtd7mu2gemy28kpf4zefq4ssqzdzzycj7zjhk4arpavfhsct5a3p'
>>> encode('bc', 1,
unhexlify('2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311'))
'bc1p9nh05ha8wrljf7ru236awm4t2x0d5ctkkywmu9sclnm4t0av2vgs4k3au7'
>>> encode('bc', 16, unhexlify('0000'))
'bc1sqqqqkfw08p'

If we open the file segwit_addr.py and look at what the code is doing, the first thing
we will notice is the sole difference between bech32 (used for segwit v0) and bech32m
(used for later segwit versions) is the constant:

BECH32_CONSTANT = 1
BECH32M_CONSTANT = 0x2bc830a3

Next we notice the code that produces the checksum. In the final step of the check‐
sum, the appropriate constant is merged into the value using an xor operation. That
single value is the only difference between bech32 and bech32m.

With the checksum created, each 5-bit character in the data part (including the
witness version, witness program, and checksum) is converted to alphanumeric char‐
acters.

For decoding back into an output script, we work in reverse. First let’s use the
reference library to decode two of our addresses:

>>> help(decode)
decode(hrp, addr)
    Decode a segwit address.

>>> _ = decode("bc", "bc1q9d3xa5gg45q2j39m9y32xzvygcgay4rgc6aaee")
>>>  _[0], bytes(_[1]).hex()
(0, '2b626ed108ad00a944bb2922a309844611d25468')
>>> _ = decode("bc",
        "bc1p9nh05ha8wrljf7ru236awm4t2x0d5ctkkywmu9sclnm4t0av2vgs4k3au7")
>>> _[0], bytes(_[1]).hex()
(1, '2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311')

We get back both the witness version and the witness program. Those can be inserted
into the template for our output script:

<version> <program>

For example:

OP_0 2b626ed108ad00a944bb2922a309844611d25468
OP_1 2ceefa5fa770ff24f87c5475d76eab519eda6176b11dbe1618fcf755bfac5311

One possible mistake here to be aware of is that a witness version
of 0 is for OP_0, which uses the byte 0x00—but a witness version of
1 uses OP_1, which is byte 0x51. Witness versions 2 through 16 use
0x52 through 0x60, respectively.
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When implementing bech32m encoding or decoding, we very strongly recommend
that you use the test vectors provided in BIP350. We also ask that you ensure your
code passes the test vectors related to paying future segwit versions that haven’t been
defined yet. This will help make your software usable for many years to come even
if you aren’t able to add support for new Bitcoin features as soon as they become
available.

Private Key Formats
The private key can be represented in a number of different formats, all of which
correspond to the same 256-bit number. Table 4-4 shows several common formats
used to represent private keys. Different formats are used in different circumstances.
Hexadecimal and raw binary formats are used internally in software and rarely shown
to users. The WIF is used for import/export of keys between wallets and often used in
QR code (barcode) representations of private keys.

Modern Relevancy of Private Key Formats
Early Bitcoin wallet software generated one or more independent private keys when
a new user wallet was initialized. When the initial set of keys had all been used,
the wallet might generate additional private keys. Individual private keys could be
exported or imported. Any time new private keys were generated or imported, a new
backup of the wallet needed to be created.

Later Bitcoin wallets began using deterministic wallets where all private keys are
generated from a single seed value. These wallets only ever need to be backed up
once for typical onchain use. However, if a user exports a single private key from
one of these wallets and an attacker acquires that key plus some nonprivate data
about the wallet, they can potentially derive any private key in the wallet—allowing
the attacker to steal all of the wallet funds. Additionally, keys cannot be imported
into deterministic wallets. This means almost no modern wallets support the ability
to export or import an individual key. The information in this section is mainly of
interest to anyone needing compatibility with early Bitcoin wallets.

See “Hierarchical Deterministic (HD) Key Generation (BIP32)” on page 93 for more
information.

Table 4-4. Private key representations (encoding formats)

Type Prefix Description
Hex None 64 hexadecimal digits

WIF 5 Base58check encoding: base58 with version prefix of 128 and 32-bit checksum

WIF-compressed K or L As above, with added suffix 0x01 before encoding
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Table 4-5 shows the private key generated in several different formats.

Table 4-5. Example: Same key, different formats

Format Private key
Hex 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

WIF-compressed KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

All of these representations are different ways of showing the same number, the same
private key. They look different, but any one format can easily be converted to any
other format.

Compressed Private Keys
The commonly used term “compressed private key” is a misnomer, because when
a private key is exported as WIF-compressed, it is actually one byte longer than an
“uncompressed” private key. That is because the private key has an added one-byte
suffix (shown as 01 in hex in Table 4-6), which signifies that the private key is from
a newer wallet and should only be used to produce compressed public keys. Private
keys are not themselves compressed and cannot be compressed. The term compressed
private key really means “private key from which only compressed public keys should
be derived,” whereas uncompressed private key really means “private key from which
only uncompressed public keys should be derived.” You should only refer to the
export format as “WIF-compressed” or “WIF” and not refer to the private key itself as
“compressed” to avoid further confusion

Table 4-6 shows the same key, encoded in WIF and WIF-compressed formats.

Table 4-6. Example: Same key, different formats

Format Private key
Hex 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Hex-compressed 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD01

WIF-compressed KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

Notice that the hex-compressed private key format has one extra byte at the end (01
in hex). While the base58 encoding version prefix is the same (0x80) for both WIF
and WIF-compressed formats, the addition of one byte on the end of the number
causes the first character of the base58 encoding to change from a 5 to either a K or
L. Think of this as the base58 equivalent of the decimal encoding difference between
the number 100 and the number 99. While 100 is one digit longer than 99, it also has
a prefix of 1 instead of a prefix of 9. As the length changes, it affects the prefix. In
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base58, the prefix 5 changes to a K or L as the length of the number increases by one
byte.

Remember, these formats are not used interchangeably. In a newer wallet that imple‐
ments compressed public keys, the private keys will only ever be exported as WIF-
compressed (with a K or L prefix). If the wallet is an older implementation and does
not use compressed public keys, the private keys will only ever be exported as WIF
(with a 5 prefix). The goal here is to signal to the wallet importing these private keys
whether it must search the blockchain for compressed or uncompressed public keys
and addresses.

If a Bitcoin wallet is able to implement compressed public keys, it will use those
in all transactions. The private keys in the wallet will be used to derive the public
key points on the curve, which will be compressed. The compressed public keys will
be used to produce Bitcoin addresses and those will be used in transactions. When
exporting private keys from a new wallet that implements compressed public keys,
the WIF is modified, with the addition of a one-byte suffix 01 to the private key. The
resulting base58check-encoded private key is called a “compressed WIF” and starts
with the letter K or L instead of starting with “5,” as is the case with WIF-encoded
(uncompressed) keys from older wallets.

Advanced Keys and Addresses
In the following sections we will look at advanced forms of keys and addresses, such
as vanity addresses and paper wallets.

Vanity Addresses
Vanity addresses are valid Bitcoin addresses that contain human-readable messages.
For example, 1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33 is a valid address that contains
the letters forming the word “Love” as the first four base58 letters. Vanity addresses
require generating and testing billions of candidate private keys until a Bitcoin
address with the desired pattern is found. Although there are some optimizations
in the vanity generation algorithm, the process essentially involves picking a private
key at random, deriving the public key, deriving the Bitcoin address, and checking to
see if it matches the desired vanity pattern, repeating billions of times until a match is
found.

Once a vanity address matching the desired pattern is found, the private key from
which it was derived can be used by the owner to spend bitcoins in exactly the same
way as any other address. Vanity addresses are no less or more secure than any other
address. They depend on the same elliptic curve cryptography (ECC) and secure hash
algorithm (SHA) as any other address. You can no more easily find the private key of
an address starting with a vanity pattern than you can any other address.
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Eugenia is a children’s charity director operating in the Philippines. Let’s say that
Eugenia is organizing a fundraising drive and wants to use a vanity Bitcoin address to
publicize the fundraising. Eugenia will create a vanity address that starts with “1Kids”
to promote the children’s charity fundraiser. Let’s see how this vanity address will be
created and what it means for the security of Eugenia’s charity.

Generating vanity addresses
It’s important to realize that a Bitcoin address is simply a number represented by
symbols in the base58 alphabet. The search for a pattern like “1Kids” can be seen as
searching for an address in the range from 1Kids11111111111111111111111111111
to 1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz. There are approximately 5829 (approxi‐
mately 1.4 × 1051) addresses in that range, all starting with “1Kids.” Table 4-7 shows
the range of addresses that have the prefix 1Kids.

Table 4-7. The range of vanity addresses starting with “1Kids”
From 1Kids11111111111111111111111111111

1Kids11111111111111111111111111112

1Kids11111111111111111111111111113

…

To 1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Let’s look at the pattern “1Kids” as a number and see how frequently we might find
this pattern in a Bitcoin address (see Table 4-8). An average desktop computer PC,
without any specialized hardware, can search approximately 100,000 keys per second.

Table 4-8. The frequency of a vanity pattern (1KidsCharity) and average search time on a
desktop PC

Length Pattern Frequency Average search time
1 1K 1 in 58 keys < 1 milliseconds

2 1Ki 1 in 3,364 50 milliseconds

3 1Kid 1 in 195,000 < 2 seconds

4 1Kids 1 in 11 million 1 minute

5 1KidsC 1 in 656 million 1 hour

6 1KidsCh 1 in 38 billion 2 days

7 1KidsCha 1 in 2.2 trillion 3–4 months

8 1KidsChar 1 in 128 trillion 13–18 years

9 1KidsChari 1 in 7 quadrillion 800 years

10 1KidsCharit 1 in 400 quadrillion 46,000 years

11 1KidsCharity 1 in 23 quintillion 2.5 million years
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As you can see, Eugenia won’t be creating the vanity address “1KidsCharity” anytime
soon, even if she had access to several thousand computers. Each additional character
increases the difficulty by a factor of 58. Patterns with more than seven characters are
usually found by specialized hardware, such as custom-built desktops with multiple
graphics processing units (GPUs). Vanity searches on GPU systems are many orders
of magnitude faster than on a general-purpose CPU.

Another way to find a vanity address is to outsource the work to a pool of vanity
miners. A vanity pool is a service that allows those with fast hardware to earn bitcoin
searching for vanity addresses for others. For a fee, Eugenia can outsource the search
for a seven-character pattern vanity address and get results in a few hours instead of
having to run a CPU search for months.

Generating a vanity address is a brute-force exercise: try a random key, check the
resulting address to see if it matches the desired pattern, repeat until successful.

Vanity address security and privacy
Vanity addresses were popular in the early years of Bitcoin but have almost entirely
disappeared from use as of 2023. There are two likely causes for this trend:

Deterministic wallets
As we saw in “Recovery Codes” on page 8, it’s possible to back up every key in
most modern wallets by simply writing down a few words or characters. This is
achieved by deriving every key in the wallet from those words or characters using
a deterministic algorithm. It’s not possible to use vanity addresses with a deter‐
ministic wallet unless the user backs up additional data for every vanity address
they create. More practically, most wallets using deterministic key generation
simply don’t allow importing a private key or key tweak from a vanity generator.

Avoiding address reuse
Using a vanity address to receive multiple payments to the same address creates
a link between all of those payments. This might be acceptable to Eugenia if her
nonprofit needs to report its income and expenditures to a tax authority anyway.
However, it also reduces the privacy of people who either pay Eugenia or receive
payments from her. For example, Alice may want to donate anonymously and
Bob may not want his other customers to know that he gives discount pricing to
Eugenia.

We don’t expect to see many vanity addresses in the future unless the preceding
problems are solved.
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Paper Wallets
Paper wallets are private keys printed on paper. Often the paper wallet also includes
the corresponding Bitcoin address for convenience, but this is not necessary because
it can be derived from the private key.

Paper wallets are an OBSOLETE technology and are dangerous
for most users. There are many subtle pitfalls involved in generat‐
ing them, not least of which is the possibility that the generating
code is compromised with a “back door.” Many bitcoins have been
stolen this way. Paper wallets are shown here for informational
purposes only and should not be used for storing bitcoin. Use
a recovery code to back up your keys, possibly with a hardware
signing device to store keys and sign transactions. DO NOT USE
PAPER WALLETS.

Paper wallets come in many designs and sizes, with many different features. Fig‐
ure 4-10 shows a sample paper wallet.

Figure 4-10. An example of a simple paper wallet.

Some are intended to be given as gifts and have seasonal themes, such as Christmas
and New Year’s. Others are designed for storage in a bank vault or safe with the
private key hidden in some way, either with opaque scratch-off stickers or folded and
sealed with tamper-proof adhesive foil. Other designs feature additional copies of the
key and address, in the form of detachable stubs similar to ticket stubs, allowing you
to store multiple copies to protect against fire, flood, or other natural disasters.
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From the original public-key focused design of Bitcoin to modern addresses and
scripts like bech32m and pay to taproot—and even addresses for future Bitcoin
upgrades—you’ve learned how the Bitcoin protocol allows spenders to identify the
wallets that should receive their payments. But when it’s actually your wallet receiving
the payments, you’re going to want the assurance that you’ll still have access to that
money even if something happens to your wallet data. In the next chapter, we’ll look
at how Bitcoin wallets are designed to protect their funds from a variety of threats.
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CHAPTER 5

Wallet Recovery

Creating pairs of private and public keys is a crucial part of allowing Bitcoin wallets
to receive and spend bitcoins. But losing access to a private key can make it impossi‐
ble for anyone to ever spend the bitcoins received to the corresponding public key.
Wallet and protocol developers over the years have worked to design systems that
allow users to recover access to their bitcoins after a problem without compromising
security the rest of the time.

In this chapter, we’ll examine some of the different methods employed by wallets
to prevent the loss of data from becoming a loss of money. Some solutions have
almost no downsides and are universally adopted by modern wallets. We’ll simply
recommend those solutions as best practices. Other solutions have both advantages
and disadvantages, leading different wallet authors to make different trade-offs. In
those cases, we’ll describe the various options available.

Independent Key Generation
Wallets for physical cash hold that cash, so it’s unsurprising that many people mistakenly
believe that Bitcoin wallets contain bitcoins. In fact, what many people call a Bitcoin wal‐
let—which we call a wallet database to distinguish it from wallet applications—contains
only keys. Those keys are associated with bitcoins recorded on the blockchain. By proving
to Bitcoin full nodes that you control the keys, you can spend the associated bitcoins.

Simple wallet databases contain both the public keys to which bitcoins are received
and the private keys that allow creating the signatures necessary to authorize spend‐
ing those bitcoins. Other wallets’ databases may contain only public keys, or only
some of the private keys necessary to authorize a spending transaction. Their wallet
applications produce the necessary signatures by working with external tools, such as
hardware signing devices or other wallets in a multisignature scheme.
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It’s possible for a wallet application to independently generate each of the wallet keys
it later plans to use, as illustrated in Figure 5-1. All early Bitcoin wallet applications
did this, but it required users to back up the wallet database each time they generated
and distributed new keys, which could be as often as each time they generated a new
address to receive a new payment. Failure to back up the wallet database on time
would lead to the user losing access to any funds received to keys that had not been
backed up.

For each independently generated key, the user would need to back up about 32 bytes,
plus overhead. Some users and wallet applications tried to minimize the amount of
data that needed to be backed up by only using a single key. Although that can be
secure, it severely reduces the privacy of that user and all of the people with whom
they transact. People who valued their privacy and those of their peers created new
key pairs for each transaction, producing wallet databases that could only reasonably
be backed up using digital media.

Figure 5-1. Nondeterministic key generation: a collection of independently generated
keys stored in a wallet database.

Modern wallet applications don’t independently generate keys but instead derive
them from a single random seed using a repeatable (deterministic) algorithm.

Deterministic Key Generation
A hash function will always produce the same output when given the same input, but
if the input is changed even slightly, the output will be different. If the function is
cryptographically secure, nobody should be able to predict the new output—not even
if they know the new input.

This allows us to take one random value and transform it into a practically unlimited
number of seemingly random values. Even more useful, later using the same hash
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function with the same input (called a seed) will produce the same seemingly random
values:

# Collect some entropy (randomness)
$ dd if=/dev/random count=1 status=none | sha256sum
f1cc3bc03ef51cb43ee7844460fa5049e779e7425a6349c8e89dfbb0fd97bb73  -

# Set our seed to the random value
$ seed=f1cc3bc03ef51cb43ee7844460fa5049e779e7425a6349c8e89dfbb0fd97bb73

# Deterministically generate derived values
$ for i in {0..2} ; do echo "$seed + $i" | sha256sum ; done
50b18e0bd9508310b8f699bad425efdf67d668cb2462b909fdb6b9bd2437beb3  -
a965dbcd901a9e3d66af11759e64a58d0ed5c6863e901dfda43adcd5f8c744f3  -
19580c97eb9048599f069472744e51ab2213f687d4720b0efc5bb344d624c3aa  -

If we use the derived values as our private keys, we can later generate exactly those
same private keys by using our seed value with the algorithm we used before. A
user of deterministic key generation can back up every key in their wallet by simply
recording their seed and a reference to the deterministic algorithm they used. For
example, even if Alice has a million bitcoins received to a million different addresses,
all she needs to back up in order to later recover access to those bitcoins is:

f1cc 3bc0 3ef5 1cb4 3ee7 8444 60fa 5049
e779 e742 5a63 49c8 e89d fbb0 fd97 bb73

A logical diagram of basic sequential deterministic key generation is shown in Fig‐
ure 5-2. However, modern wallet applications have a more clever way of accomplish‐
ing this that allows public keys to be derived separately from their corresponding
private keys, making it possible to store private keys more securely than public keys.

Figure 5-2. Deterministic key generation: a deterministic sequence of keys derived from a
seed for a wallet database.
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Public Child Key Derivation
In “Public Keys” on page 59, we learned how to create a public key from a private
key using elliptic curve cryptography (ECC). Although operations on an elliptic curve
are not intuitive, they are analogous to the addition, subtraction, and multiplication
operations used in regular arithmetic. In other words, it’s possible to add or subtract
from a public key, or to multiply it. Consider the operation we used in “Public Keys”
on page 59 for generating a public key (K) from a private key (k) using the generator
point (G):

K = k × G

It’s possible to create a derived key pair, called a child key pair, by simply adding the
same value to both sides of the equation:

K + 123 × G == k + 123 × G

In equations throughout this book, we use a single equals sign for
operations such as K = k × G where the value of a variable is
calculated. We use a double equals sign to show both sides of an
equation are equivalent, or that an operation should return false
(not true) if the two sides aren’t equivalent.

An interesting consequence of this is that adding 123 to the public key can be done
using entirely public information. For example, Alice generates public key K and
gives it to Bob. Bob doesn’t know the private key, but he does know the global
constant G, so he can add any value to the public key to produce a derived public
child key. If he then tells Alice the value he added to the public key, she can add the
same value to the private key, producing a derived private child key that corresponds
to the public child key Bob created.

In other words, it’s possible to create child public keys even if you don’t know
anything about the parent private key. The value added to a public key is known as
a key tweak. If a deterministic algorithm is used for generating the key tweaks, then
it’s possible for someone who doesn’t know the private key to create an essentially
unlimited sequence of public child keys from a single public parent key. The person
who controls the private parent key can then use the same key tweaks to create all the
corresponding private child keys.

This technique is commonly used to separate wallet application frontends (which
don’t require private keys) from signing operations (which do require private keys).
For example, Alice’s frontend distributes her public keys to people wanting to pay her.
Later, when she wants to spend the received money, she can provide the key tweaks
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she used to a hardware signing device (sometimes confusingly called a hardware wal‐
let) that securely stores her original private key. The hardware signer uses the tweaks
to derive the necessary child private keys and uses them to sign the transactions,
returning the signed transactions to the less-secure frontend for broadcast to the
Bitcoin network.

Public child key derivation can produce a linear sequence of keys similar to the
previously seen Figure 5-2, but modern wallet applications use one more trick to
provide a tree of keys instead a single sequence, as described in the following section.

Hierarchical Deterministic (HD) Key Generation (BIP32)
Every modern Bitcoin wallet of which we’re aware uses hierarchical deterministic
(HD) key generation by default. This standard, defined in BIP32, uses deterministic
key generation and optional public child key derivation with an algorithm that
produces a tree of keys. In this tree, any key can be the parent of a sequence of child
keys, and any of those child keys can be a parent for another sequence of child keys
(grandchildren of the original key). There’s no arbitrary limit on the depth of the tree.
This tree structure is illustrated in Figure 5-3.

Figure 5-3. HD wallet: a tree of keys generated from a single seed.

The tree structure can be used to express additional organizational meaning, such
as when a specific branch of subkeys is used to receive incoming payments and a
different branch is used to receive change from outgoing payments. Branches of keys
can also be used in corporate settings, allocating different branches to departments,
subsidiaries, specific functions, or accounting categories.
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We’ll provide a detailed exploration of HD wallets in “Creating an HD Wallet from
the Seed” on page 108.

Seeds and Recovery Codes
HD wallets are a very powerful mechanism for managing many keys all derived from
a single seed. If your wallet database is ever corrupted or lost, you can regenerate
all of the private keys for your wallet using your original seed. But, if someone else
gets your seed, they can also generate all of the private keys, allowing them to steal
all of the bitcoins from a single-sig wallet and reduce the security of bitcoins in
multisignature wallets. In this section, we’ll look at several recovery codes, which are
intended to make backups easier and safer.

Although seeds are large random numbers, usually 128 to 256 bits, most recovery
codes use human-language words. A large part of the motivation for using words was
to make a recovery code easy to remember. For example, consider the recovery code
encoded using both hexadecimal and words in Example 5-1.

Example 5-1. A seed encoded in hex and in English words

Hex-encoded:
0C1E 24E5 9177 79D2 97E1 4D45 F14E 1A1A

Word-encoded:
army van defense carry jealous true
garbage claim echo media make crunch

There may be cases where remembering a recovery code is a powerful feature, such
as when you are unable to transport physical belongings (like a recovery code written
on paper) without them being seized or inspected by an outside party that might steal
your bitcoins. However, most of the time, relying on memory alone is dangerous:

• If you forget your recovery code and lose access to your original wallet database,•
your bitcoins are lost to you forever.

• If you die or suffer a severe injury, and your heirs don’t have access to your•
original wallet database, they won’t be able to inherit your bitcoins.

• If someone thinks you have a recovery code memorized that will give them•
access to bitcoins, they may attempt to coerce you into disclosing that code.
As of this writing, Bitcoin contributor Jameson Lopp has documented over 100
physical attacks against suspected owners of bitcoin and other digital assets,
including at least three deaths and numerous occasions where someone was
tortured, held hostage, or had their family threatened.
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Even if you use a type of recovery code that was designed for easy
memorization, we very strongly encourage you to consider writing
it down.

Several different types of recovery codes are in wide use as of this writing:

BIP39
The most popular method for generating recovery codes for the past decade,
BIP39 involves generating a random sequence of bytes, adding a checksum to it,
and encoding the data into a series of 12 to 24 words (which may be localized to a
user’s native language). The words (plus an optional passphrase) are run through
a key-stretching function, and the output is used as a seed. BIP39 recovery codes
have several shortcomings, which later schemes attempt to address.

Electrum v2
Used in the Electrum wallet (version 2.0 and above), this word-based recovery
code has several advantages over BIP39. It doesn’t rely on a global word list that
must be implemented by every version of every compatible program, plus its
recovery codes include a version number that improves reliability and efficiency.
Like BIP39, it supports an optional passphrase (which Electrum calls a seed
extension) and uses the same key-stretching function.

Aezeed
Used in the LND wallet, this is another word-based recovery code that offers
improvements over BIP39. It includes two version numbers: one is internal and
eliminates several issues with upgrading wallet applications (like Electrum v2’s
version number); the other version number is external, which can be incremen‐
ted to change the underlying cryptographic properties of the recovery code. It
also includes a wallet birthday in the recovery code, a reference to the date when
the user created the wallet database. This allows a restoration process to find
all of the funds associated with a wallet without scanning the entire blockchain,
which is especially useful for privacy-focused lightweight clients. It includes
support for changing the passphrase or changing other aspects of the recovery
code without needing to move funds to a new seed—the user need only back
up a new recovery code. One disadvantage compared to Electrum v2 is that, like
BIP39, it depends on both the backup and the recovery software supporting the
same word list.

Independent Key Generation | 95



Muun
Used in the Muun wallet, which defaults to requiring spending transactions
be signed by multiple keys, this is a nonword code that must be accompanied
by additional information (which Muun currently provides in a PDF). This
recovery code is unrelated to the seed and is instead used to decrypt the private
keys contained in the PDF. Although this is unwieldy compared to the BIP39,
Electrum v2, and Aezeed recovery codes, it provides support for new technolo‐
gies and standards that are becoming more common in new wallets, such as
Lightning Network (LN) support, output script descriptors, and miniscript.

SLIP39
A successor to BIP39 with some of the same authors, SLIP39 allows a single seed
to be distributed using multiple recovery codes that can be stored in different
places (or by different people). When you create the recovery codes, you can
specify how many will be required to recover the seed. For example, you create
five recovery codes but only require three of them to recover the seed. SLIP39
provides support for an optional passphrase, depends on a global word list, and
doesn’t directly provide versioning.

A new system for distributing recovery codes with similarities to
SLIP39 was proposed during the writing of this book. Codex32
allows creating and validating recovery codes with nothing except
printed instructions, scissors, a precision knife, brass fasteners, and
a pen—plus privacy and a few hours of spare time. Alternatively,
those who trust computers can create recovery codes instantly
using software on a digital device. You can create up to 31 recovery
codes to be stored in different places, specifying how many of them
will be required in order to recover the seed. As a new proposal,
details about Codex32 may change significantly before this book
is published, so we encourage any readers interested in distributed
recovery codes to investigate its current status.

Recovery Code Passphrases
The BIP39, Electrum v2, Aezeed, and SLIP39 schemes may all be used with an
optional passphrase. If the only place you keep this passphrase is in your memory,
it has the same advantages and disadvantages as memorizing your recovery code.
However, there’s a further set of trade-offs specific to the way the passphrase is used
by the recovery code.

Three of the schemes (BIP39, Electrum v2, and SLIP39) do not include the optional
passphrase in the checksum they use to protect against data entry mistakes. Every
passphrase (including not using a passphrase) will result in producing a seed for a
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BIP32 tree of keys, but they won’t be the same trees. Different passphrases will result
in different keys. That can be a positive or a negative, depending on your perspective:

• On the positive, if someone obtains your recovery code (but not your pass‐•
phrase), they will see a valid BIP32 tree of keys. If you prepared for that
contingency and sent some bitcoins to the nonpassphrase tree, they will steal
that money. Although having some of your bitcoins stolen is normally a bad
thing, it can also provide you with a warning that your recovery code has been
compromised, allowing you to investigate and take corrective measures. The
ability to create multiple passphrases for the same recovery code that all look
valid is a type of plausible deniability.

• On the negative, if you’re coerced to give an attacker a recovery code (with or•
without a passphrase) and it doesn’t yield the amount of bitcoins they expected,
they may continue trying to coerce you until you give them a different pass‐
phrase with access to more bitcoins. Designing for plausible deniability means
there’s no way to prove to an attacker that you’ve revealed all of your information,
so they may continue trying to coerce you even after you’ve given them all of
your bitcoins.

• An additional negative is the reduced amount of error detection. If you enter•
a slightly wrong passphrase when restoring from a backup, your wallet can’t
warn you about the mistake. If you were expecting a balance, you will know
something is wrong when your wallet application shows you a zero balance for
the regenerated key tree. However, novice users may think their money was
permanently lost and do something foolish, such as give up and throw away their
recovery code. Or, if you were actually expecting a zero balance, you might use
the wallet application for years after your mistake until the next time you restore
with the correct passphrase and see a zero balance. Unless you can figure out
what typo you previously made, your funds are gone.

Unlike the other schemes, the Aezeed seed encryption scheme authenticates its
optional passphrase and will return an error if you provide an incorrect value. This
eliminates plausible deniability, adds error detection, and makes it possible to prove
that the passphrase has been revealed.

Many users and developers disagree on which approach is better, with some strongly
in favor of plausible deniability and others preferring the increased safety that error
detection gives novice users and those under duress. We suspect the debate will
continue for as long as recovery codes continue to be widely used.

Backing Up Nonkey Data
The most important data in a wallet database is its private keys. If you lose access
to the private keys, you lose the ability to spend your bitcoins. Deterministic key
derivation and recovery codes provide a reasonably robust solution for backing up
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and recovering your keys and the bitcoins they control. However, it’s important
to consider that many wallet databases store more than just keys—they also store
user-provided information about every transaction they sent or received.

For example, when Bob creates a new address as part of sending an invoice to Alice,
he adds a label to the address he generates so that he can distinguish her payment
from other payments he receives. When Alice pays Bob’s address, she labels the
transaction as paying Bob for the same reason. Some wallets also add other useful
information to transactions, such as the current exchange rate, which can be useful
for calculating taxes in some jurisdictions. These labels are stored entirely within
their own wallets—not shared with the network—protecting their privacy and keep‐
ing unnecessary personal data out of the blockchain. For an example, see Table 5-1.

Table 5-1. Alice’s transaction history with each transaction labeled

Date Label BTC
2023-01-01 Bought bitcoins from Joe +0.00100

2023-01-02 Paid Bob for podcast −0.00075

However, because address and transaction labels are stored only in each user’s wallet
database and because they aren’t deterministic, they can’t be restored by using just
a recovery code. If the only recovery is seed-based, then all the user will see is a
list of approximate transaction times and bitcoin amounts. This can make it quite
difficult to figure out how you used your money in the past. Imagine reviewing a
bank or credit card statement from a year ago that had the date and amount of every
transaction listed but a blank entry for the “description” field.

Wallets should provide their users with a convenient way to back up label data. That
seems obvious, but there are a number of widely used wallet applications that make it
easy to create and use recovery codes but that provide no way to back up or restore
label data.

Additionally, it may be useful for wallet applications to provide a standardized format
to export labels so that they can be used in other applications (e.g., accounting
software). A standard for that format is proposed in BIP329.

Wallet applications implementing additional protocols beyond basic Bitcoin support
may also need or want to store other data. For example, as of 2023, an increasing
number of applications have added support for sending and receiving transactions
over the Lightning Network (LN). Although the LN protocol provides a method
to recover funds in the event of a data loss, called static channel backups, it can’t
guarantee results. If the node your wallet connects to realizes you’ve lost data, it may
be able to steal bitcoins from you. If it loses its wallet database at the same time you
lose your database, and neither of you has an adequate backup, you’ll both lose funds.
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Again, this means users and wallet applications need to do more than just back up a
recovery code.

One solution implemented by a few wallet applications is to frequently and automati‐
cally create complete backups of their wallet database encrypted by one of the keys
derived from their seed. Bitcoin keys must be unguessable and modern encryption
algorithms are considered very secure, so nobody should be able to open the encryp‐
ted backup except someone who can generate the seed. This makes it safe to store
the backup on untrusted computers such as cloud hosting services or even random
network peers.

Later, if the original wallet database is lost, the user can enter their recovery code into
the wallet application to restore their seed. The application can then retrieve the latest
backup file, regenerate the encryption key, decrypt the backup, and restore all of the
user’s labels and additional protocol data.

Backing Up Key Derivation Paths
In a BIP32 tree of keys, there are approximately four billion first-level keys; each of
those keys can have its own four billion children, with those children each potentially
having four billion children of their own, and so on. It’s not possible for a wallet
application to generate even a small fraction of every possible key in a BIP32 tree,
which means that recovering from data loss requires knowing more than just the
recovery code, the algorithm for obtaining your seed (e.g., BIP39), and the determin‐
istic key derivation algorithm (e.g., BIP32)—it also requires knowing what paths
in the tree of keys your wallet application used for generating the specific keys it
distributed.

Two solutions to this problem have been adopted. The first is using standard paths.
Every time there’s a change related to the addresses that wallet applications might
want to generate, someone creates a BIP defining what key derivation path to use. For
example, BIP44 defines m/44'/0'/0' as the path to use for keys in P2PKH scripts (a
legacy address). A wallet application implementing this standard uses the keys in that
path both when it is first started and after a restoration from a recovery code. We call
this solution implicit paths. Several popular implicit paths defined by BIPs are shown
in Table 5-2

Table 5-2. Implicit script paths defined by various BIPs

Standard Script BIP32 path
BIP44 P2PKH m/44'/0'/0'

BIP49 Nested P2WPKH m/49'/1'/0'

BIP84 P2WPKH m/84'/0'/0'

BIP86 P2TR Single-key m/86'/0'/0'
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The second solution is to back up the path information with the recovery code,
making it clear which path is used with which scripts. We call this explicit paths.

The advantage of implicit paths is that users don’t need to keep a record of what paths
they use. If the user enters their recovery code into the same wallet application they
previously used, of the same version or higher, it will automatically regenerate keys
for the same paths it previously used.

The disadvantage of implicit scripts is their inflexibility. When a recovery code is
entered, a wallet application must generate the keys for every path it supports and
it must scan the blockchain for transactions involving those keys, otherwise it might
not find all of a user’s transactions. This is wasteful in wallets that support many
features each with their own path if the user only tried a few of those features.

For implicit path recovery codes that don’t include a version number, such as BIP39
and SLIP39, a new version of a wallet application that drops support for an older
path can’t warn users during the restore process that some of their funds may not be
found. The same problem happens in reverse if a user enters their recovery code into
older software: it won’t find newer paths to which the user may have received funds.
Recovery codes that include version information, such as Electrum v2 and Aezeed,
can detect that a user is entering an older or newer recovery code and direct them to
appropriate resources.

The final consequence of implicit paths is that they can only include information that
is either universal (such as a standardized path) or derived from the seed (such as
keys). Important nondeterministic information that’s specific to a certain user can’t be
restored using a recovery code. For example, Alice, Bob, and Carol receive funds that
can only be spent with signatures from two out of three of them. Although Alice only
needs either Bob’s or Carol’s signature to spend, she needs both of their public keys
in order to find their joint funds on the blockchain. That means each of them must
back up the public keys for all three of them. As multisignature and other advanced
scripts become more common on Bitcoin, the inflexibility of implicit paths becomes
more significant.

The advantage of explicit paths is that they can describe exactly what keys should be
used with what scripts. There’s no need to support outdated scripts, no problems with
backward or forward compatibility, and any extra information (like the public keys
of other users) can be included directly. Their disadvantage is that they require users
to back up additional information along with their recovery code. The additional
information usually can’t compromise a user’s security, so it doesn’t require as much
protection as the recovery code, although it can reduce their privacy and does require
some protection.
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Almost all wallet applications that use explicit paths as of this writing use the output
script descriptors standard (called descriptors for short) as specified in BIPs 380, 381,
382, 383, 384, 385, 386, and 389. Descriptors describe a script and the keys (or key
paths) to be used with it. A few example descriptors are shown in Table 5-3.

Table 5-3. Sample descriptors from Bitcoin Core documentation (with elision)

Descriptor Explanation

pkh(02c6…9ee5) P2PKH script for the provided public key

sh(multi(2,022f…
2a01,03ac…ccbe))

P2SH multisignature requiring two signatures corresponding to these two keys

pkh([d34db33f/44'/0'/
0']xpub6ERA…RcEL/1/*)

P2PKH scripts for the BIP32 d34db33f with the extended public key (xpub) at the
path M/44'/0'/0', which is xpub6ERA…RcEL, using the keys at M/1/* of that
xpub

It has long been the trend for wallet applications designed only for single signature
scripts to use implicit paths. Wallet applications designed for multiple signatures or
other advanced scripts are increasingly adopting support for explicit paths using
descriptors. Applications that do both will usually conform to the standards for
implicit paths and also provide descriptors.

A Wallet Technology Stack in Detail
Developers of modern wallets can choose from a variety of different technologies to
help users create and use backups—and new solutions appear every year. Instead of
going into detail about each of the options we described earlier in this chapter, we’ll
focus the rest of this chapter on the stack of technologies we think is most widely
used in wallets as of early 2023:

• BIP39 recovery codes•
• BIP32 HD key derivation•
• BIP44-style implicit paths•

All of these standards have been around since 2014 or earlier, and you’ll have no
problem finding additional resources for using them. However, if you’re feeling
bold, we do encourage you to investigate more modern standards that may provide
additional features or safety.

BIP39 Recovery Codes
BIP39 recovery codes are word sequences that represent (encode) a random number
used as a seed to derive a deterministic wallet. The sequence of words is sufficient to
re-create the seed and from there, re-create all the derived keys. A wallet application
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that implements deterministic wallets with a BIP39 recovery code will show the user
a sequence of 12 to 24 words when first creating a wallet. That sequence of words is
the wallet backup and can be used to recover and re-create all the keys in the same or
any compatible wallet application. Recovery codes make it easier for users to back up
because they are easy to read and correctly transcribe.

Recovery codes are often confused with “brainwallets.” They are
not the same. The primary difference is that a brainwallet consists
of words chosen by the user, whereas recovery codes are created
randomly by the wallet and presented to the user. This impor‐
tant difference makes recovery codes much more secure because
humans are very poor sources of randomness.

Note that BIP39 is one implementation of a recovery code standard. BIP39 was
proposed by the company behind the Trezor hardware wallet and is compatible with
many other wallets applications, although certainly not all.

BIP39 defines the creation of a recovery code and seed, which we describe here in
nine steps. For clarity, the process is split into two parts: steps 1 through 6 are shown
in “Generating a recovery code” on page 102 and steps 7 through 9 are shown in
“From recovery code to seed” on page 104.

Generating a recovery code
Recovery codes are generated automatically by the wallet application using the stan‐
dardized process defined in BIP39. The wallet starts from a source of entropy, adds a
checksum, and then maps the entropy to a word list:

1. Create a random sequence (entropy) of 128 to 256 bits.1.
2. Create a checksum of the random sequence by taking the first (entropy-2.

length/32) bits of its SHA256 hash.
3. Add the checksum to the end of the random sequence.3.
4. Split the result into 11-bit length segments.4.
5. Map each 11-bit value to a word from the predefined dictionary of 2,048 words.5.
6. The recovery code is the sequence of words.6.

Figure 5-4 shows how entropy is used to generate a BIP39 recovery code.
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Figure 5-4. Generating entropy and encoding as a recovery code.

Table 5-4 shows the relationship between the size of the entropy data and the length
of recovery code in words.

Table 5-4. BIP39: entropy and word length

Entropy (bits) Checksum (bits) Entropy + checksum (bits) Recovery code words
128 4 132 12

160 5 165 15

192 6 198 18

224 7 231 21

256 8 264 24
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From recovery code to seed
The recovery code represents entropy with a length of 128 to 256 bits. The entropy
is then used to derive a longer (512-bit) seed through the use of the key-stretching
function PBKDF2. The seed produced is then used to build a deterministic wallet and
derive its keys.

The key-stretching function takes two parameters: the entropy and a salt. The pur‐
pose of a salt in a key-stretching function is to make it difficult to build a lookup table
enabling a brute-force attack. In the BIP39 standard, the salt has another purpose—
it allows the introduction of a passphrase that serves as an additional security factor
protecting the seed, as we will describe in more detail in “Optional passphrase in
BIP39” on page 107.

The key-stretching function, with its 2,048 rounds of hashing,
makes it slightly harder to brute-force attack the recovery code
using software. Special-purpose hardware is not significantly affec‐
ted. For an attacker who needs to guess a user’s entire recovery
code, the length of the code (128 bits at a minimum) provides
more than sufficient security. But for cases where an attacker might
learn a small part of the user’s code, key-stretching adds some
security by slowing down how fast an attacker can check different
recovery code combinations. BIP39’s parameters were considered
weak by modern standards even when it was first published almost
a decade ago, although that’s likely a consequence of being designed
for compatibility with hardware signing devices with low-powered
CPUs. Some alternatives to BIP39 use stronger key-stretching
parameters, such as Aezeed’s 32,768 rounds of hashing using the
more complex Scrypt algorithm, although they may not be as con‐
venient to run on hardware signing devices.

The process described in steps 7 through 9 continues from the process described
previously in “Generating a recovery code” on page 102:

7. The first parameter to the PBKDF2 key-stretching function is the entropy pro‐
duced from step 6.

8. The second parameter to the PBKDF2 key-stretching function is a salt. The salt
is composed of the string constant "mnemonic" concatenated with an optional
user-supplied passphrase string.

9. PBKDF2 stretches the recovery code and salt parameters using 2,048 rounds of
hashing with the HMAC-SHA512 algorithm, producing a 512-bit value as its
final output. That 512-bit value is the seed.

Figure 5-5 shows how a recovery code is used to generate a seed.
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Figure 5-5. From recovery code to seed.

Tables 5-5, 5-6, and 5-7 show some examples of recovery codes and the seeds they
produce.

Table 5-5. 128-bit entropy BIP39 recovery code, no passphrase, resulting seed
Entropy
input (128
bits)

0c1e24e5917779d297e14d45f14e1a1a

Recovery
Code (12
words)

army van defense carry jealous true garbage claim echo media make 
crunch

Passphrase (none)

Seed (512
bits)

5b56c417303faa3fcba7e57400e120a0ca83ec5a4fc9ffba757fbe63fbd77a89a1a3be4
c67196f57c39a88b76373733891bfaba16ed27a813ceed498804c0570
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Table 5-6. 128-bit entropy BIP39 recovery code, with passphrase, resulting seed
Entropy
input (128
bits)

0c1e24e5917779d297e14d45f14e1a1a

Recovery
Code (12
words)

army van defense carry jealous true garbage claim echo media make 
crunch

Passphrase SuperDuperSecret

Seed (512
bits)

3b5df16df2157104cfdd22830162a5e170c0161653e3afe6c88defeefb0818c793dbb28
ab3ab091897d0715861dc8a18358f80b79d49acf64142ae57037d1d54

Table 5-7. 256-bit entropy BIP39 recovery code, no passphrase, resulting seed
Entropy
input (256
bits)

2041546864449caff939d32d574753fe684d3c947c3346713dd8423e74abcf8c

Recovery
Code (24
words)

cake apple borrow silk endorse fitness top denial coil riot stay wolf
luggage oxygen faint major edit measure invite love trap field dilemma 
oblige

Passphrase (none)

Seed (512
bits)

3269bce2674acbd188d4f120072b13b088a0ecf87c6e4cae41657a0bb78f5315b33b3
a04356e53d062e55f1e0deaa082df8d487381379df848a6ad7e98798404

How Much Entropy Do You Need?
BIP32 allows seeds to be from 128 to 512 bits. BIP39 accepts from 128 to 256 bits
of entropy; Electrum v2 accepts 132 bits of entropy; Aezeed accepts 128 bits of
entropy; SLIP39 accepts either 128 or 256 bits. The variation in these numbers makes
it unclear how much entropy is needed for safety. We’ll try to demystify that.

BIP32 extended private keys consist of a 256-bit key and a 256-bit chain code, for a
total of 512 bits. That means there’s a maximum of 2512 different possible extended
private keys. If you start with more than 512 bits of entropy, you’ll still get an
extended private key containing 512 bits of entropy—so there’s no point in using
more than 512 bits even if any of the standards we mentioned allowed that.

However, even though there are 2512 different extended private keys, there are only
(slightly less than) 2256 regular private keys—and its those private keys that actually
secure your bitcoins. That means, if you use more than 256 bits of entropy for your
seed, you still get private keys containing only 256 bits of entropy. There may be
future Bitcoin-related protocols where extra entropy in the extended keys provides
extra security, but that’s not currently the case.

The security strength of a Bitcoin public key is 128 bits. An attacker with a classical
computer (the only kind which can be used for a practical attack as of this writing)
would need to perform about 2128 operations on Bitcoin’s elliptic curve in order to
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find a private key for another user’s public key. The implication of a security strength
of 128 bits is that there’s no apparent benefit to using more than 128 bits of entropy
(although you need to ensure your generated private keys are selected uniformly from
within the entire 2256 range of private keys).

There is one extra benefit of greater entropy: if a fixed percentage of your recovery
code (but not the whole code) is seen by an attacker, the greater the entropy, the
harder it will be for them to figure out part of the code they didn’t see. For example,
if an attacker sees half of a 128-bit code (64 bits), it’s plausible that they’ll be able to
brute force the remaining 64 bits. If they see half of a 256-bit code (128 bits), it’s not
plausible that they can brute force the other half. We don’t recommend relying on this
defense—either keep your recovery codes very safe or use a method like SLIP39 that
lets you distribute your recovery code across multiple locations without relying on
the safety of any individual code.

As of 2023, most modern wallets generate 128 bits of entropy for their recovery codes
(or a value near 128, such as Electrum v2’s 132 bits).

Optional passphrase in BIP39
The BIP39 standard allows the use of an optional passphrase in the derivation of the
seed. If no passphrase is used, the recovery code is stretched with a salt consisting
of the constant string "mnemonic", producing a specific 512-bit seed from any given
recovery code. If a passphrase is used, the stretching function produces a different
seed from that same recovery code. In fact, given a single recovery code, every possi‐
ble passphrase leads to a different seed. Essentially, there is no “wrong” passphrase.
All passphrases are valid and they all lead to different seeds, forming a vast set of
possible uninitialized wallets. The set of possible wallets is so large (2512) that there is
no practical possibility of brute-forcing or accidentally guessing one that is in use.

There are no “wrong” passphrases in BIP39. Every passphrase leads
to some wallet, which unless previously used will be empty.

The optional passphrase creates two important features:

• A second factor (something memorized) that makes a recovery code useless•
on its own, protecting recovery codes from compromise by a casual thief. For
protection from a tech-savvy thief, you will need to use a very strong passphrase.
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• A form of plausible deniability or “duress wallet,” where a chosen passphrase•
leads to a wallet with a small amount of funds used to distract an attacker from
the “real” wallet that contains the majority of funds.

It’s important to note that the use of a passphrase also introduces the risk of loss:

• If the wallet owner is incapacitated or dead and no one else knows the pass‐•
phrase, the seed is useless and all the funds stored in the wallet are lost forever.

• Conversely, if the owner backs up the passphrase in the same place as the seed, it•
defeats the purpose of a second factor.

While passphrases are very useful, they should only be used in combination with a care‐
fully planned process for backup and recovery, considering the possibility of surviving the
owner and allowing his or her family to recover the cryptocurrency estate.

Creating an HD Wallet from the Seed
HD wallets are created from a single root seed, which is a 128-, 256-, or 512-bit
random number. Most commonly, this seed is generated by or decrypted from a
recovery code as detailed in the previous section.

Every key in the HD wallet is deterministically derived from this root seed, which
makes it possible to re-create the entire HD wallet from that seed in any compatible
HD wallet. This makes it easy to back up, restore, export, and import HD wallets con‐
taining thousands or even millions of keys by simply transferring only the recovery
code that the root seed is derived from. The process of creating the master keys and
master chain code for an HD wallet is shown in Figure 5-6.

Figure 5-6. Creating master keys and chain code from a root seed.
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The root seed is input into the HMAC-SHA512 algorithm and the resulting hash is
used to create a master private key (m) and a master chain code (c).

The master private key (m) then generates a corresponding master public key (M)
using the normal elliptic curve multiplication process m × G that we saw in “Public
Keys” on page 59.

The master chain code (c) is used to introduce entropy in the function that creates
child keys from parent keys, as we will see in the next section.

Private child key derivation
HD wallets use a child key derivation (CKD) function to derive child keys from parent
keys.

The child key derivation functions are based on a one-way hash function that
combines:

• A parent private or public key (uncompressed key)•
• A seed called a chain code (256 bits)•
• An index number (32 bits)•

The chain code is used to introduce deterministic random data to the process, so
that knowing the index and a child key is not sufficient to derive other child keys.
Knowing a child key does not make it possible to find its siblings unless you also have
the chain code. The initial chain code seed (at the root of the tree) is made from the
seed, while subsequent child chain codes are derived from each parent chain code.

These three items (parent key, chain code, and index) are combined and hashed to
generate children keys, as follows.

The parent public key, chain code, and the index number are combined and hashed
with the HMAC-SHA512 algorithm to produce a 512-bit hash. This 512-bit hash is
split into two 256-bit halves. The right-half 256 bits of the hash output become the
chain code for the child. The left-half 256 bits of the hash are added to the parent
private key to produce the child private key. In Figure 5-7, we see this illustrated with
the index set to 0 to produce the “zero” (first by index) child of the parent.
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Figure 5-7. Extending a parent private key to create a child private key.

Changing the index allows us to extend the parent and create the other children
in the sequence (e.g., Child 0, Child 1, Child 2, etc.). Each parent key can have
2,147,483,647 (231) children (231 is half of the entire 232 range available because the
other half is reserved for a special type of derivation we will talk about later in this
chapter).

Repeating the process one level down the tree, each child can in turn become a parent
and create its own children, in an infinite number of generations.

Using derived child keys
Child private keys are indistinguishable from nondeterministic (random) keys.
Because the derivation function is a one-way function, the child key cannot be used
to find the parent key. The child key also cannot be used to find any siblings. If you
have the nth child, you cannot find its siblings, such as the n–1 child or the n+1 child,
or any other children that are part of the sequence. Only the parent key and chain
code can derive all the children. Without the child chain code, the child key cannot
be used to derive any grandchildren either. You need both the child private key and
the child chain code to start a new branch and derive grandchildren.

So what can the child private key be used for on its own? It can be used to make a
public key and a Bitcoin address. Then, it can be used to sign transactions to spend
anything paid to that address.
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A child private key, the corresponding public key, and the Bitcoin
address are all indistinguishable from keys and addresses created
randomly. The fact that they are part of a sequence is not visible
outside of the HD wallet function that created them. Once created,
they operate exactly as “normal” keys.

Extended keys
As we saw earlier, the key derivation function can be used to create children at any
level of the tree, based on the three inputs: a key, a chain code, and the index of
the desired child. The two essential ingredients are the key and chain code, and
combined these are called an extended key. The term “extended key” could also be
thought of as “extensible key” because such a key can be used to derive children.

Extended keys are stored and represented simply as the concatenation of the key and
chain code. There are two types of extended keys. An extended private key is the
combination of a private key and chain code and can be used to derive child private
keys (and from them, child public keys). An extended public key is a public key and
chain code, which can be used to create child public keys (public only), as described in
“Public Keys” on page 59.

Think of an extended key as the root of a branch in the tree structure of the HD
wallet. With the root of the branch, you can derive the rest of the branch. The
extended private key can create a complete branch, whereas the extended public key
can only create a branch of public keys.

Extended keys are encoded using base58check, to easily export and import between
different BIP32-compatible wallets. The base58check coding for extended keys uses
a special version number that results in the prefix “xprv” and “xpub” when encoded
in base58 characters to make them easily recognizable. Because the extended key
contains many more bytes than regular addresses, it is also much longer than other
base58check-encoded strings we have seen previously.

Here’s an example of an extended private key, encoded in base58check:

xprv9tyUQV64JT5qs3RSTJkXCWKMyUgoQp7F3hA1xzG6ZGu6u6Q9VMNjGr67Lctvy5P8oyaYAL9CA
WrUE9i6GoNMKUga5biW6Hx4tws2six3b9c

Here’s the corresponding extended public key, encoded in base58check:

xpub67xpozcx8pe95XVuZLHXZeG6XWXHpGq6Qv5cmNfi7cS5mtjJ2tgypeQbBs2UAR6KECeeMVKZBP
LrtJunSDMstweyLXhRgPxdp14sk9tJPW9
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Public child key derivation
As mentioned previously, a very useful characteristic of HD wallets is the ability to
derive public child keys from public parent keys without having the private keys. This
gives us two ways to derive a child public key: either from the child private key or
directly from the parent public key.

An extended public key can be used, therefore, to derive all of the public keys (and
only the public keys) in that branch of the HD wallet structure.

This shortcut can be used to create public key–only deployments where a server or
application has a copy of an extended public key and no private keys whatsoever.
That kind of deployment can produce an infinite number of public keys and Bitcoin
addresses but cannot spend any of the money sent to those addresses. Meanwhile, on
another, more secure server, the extended private key can derive all the correspond‐
ing private keys to sign transactions and spend the money.

One common application of this solution is to install an extended public key on a
web server that serves an ecommerce application. The web server can use the public
key derivation function to create a new Bitcoin address for every transaction (e.g.,
for a customer shopping cart). The web server will not have any private keys that
would be vulnerable to theft. Without HD wallets, the only way to do this is to
generate thousands of Bitcoin addresses on a separate secure server and then preload
them on the ecommerce server. That approach is cumbersome and requires constant
maintenance to ensure that the ecommerce server doesn’t “run out” of keys.

Mind the Gap
An extended public key can generate approximately 4 billion direct child keys, far
more than any store or application should ever need. However, it would also take
a wallet application an unreasonable amount of time to generate all 4 billion keys
and scan the blockchain for transactions involving those keys. For that reason, most
wallets only generate a few keys at a time, scan for payments involving those keys, and
generate additional keys in the sequence as the previous keys are used. For example,
Alice’s wallet generates 100 keys. When it sees a payment to the first key, it generates
the 101st key.

Sometimes a wallet application will distribute a key to someone who later decides not
to pay, creating a gap in the key chain. That’s fine as long as the wallet has already
generated keys after the gap so that it finds later payments and continues generating
more keys. The maximum number of unused keys in a row that can fail to receive a
payment without causing problems is called the gap limit.

When a wallet application has distributed all of the keys up to its gap limit and none
of those keys have received a payment, it has three options about how to handle
future requests for new keys:
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1. It can refuse the requests, preventing it from receiving any further payments.1.
This is obviously an unpalatable option, although it’s the simplest to implement.

2. It can generate new keys beyond its gap limit. This ensures that every person2.
requesting to pay gets a unique key, preventing address reuse and improving
privacy. However, if the wallet needs to be restored from a recovery code, or if the
wallet owner is using other software loaded with the same extended public key,
those other wallets won’t see any payments received after the extended gap.

3. It can distribute keys it previously distributed, ensuring a smooth recovery but3.
potentially reducing the privacy of the wallet owner and the people with whom
they transact.

Open source production systems for online merchants, such as BTCPay Server,
attempt to dodge this problem by using very large gap limits and limiting the rate
at which they generate invoices. Other solutions have been proposed, such as asking
the spender’s wallet to construct (but not broadcast) a transaction paying a possibly
reused address before they receive a fresh address for the actual transaction. However,
these other solutions have not been used in production as of this writing.

Another common application of this solution is for cold-storage or hardware signing
devices. In that scenario, the extended private key can be stored on a paper wallet
or hardware device, while the extended public key can be kept online. The user can
create “receive” addresses at will, while the private keys are safely stored offline. To
spend the funds, the user can use the extended private key on an offline software wal‐
let application or the hardware signing device. Figure 5-8 illustrates the mechanism
for extending a parent public key to derive child public keys.

Figure 5-8. Extending a parent public key to create a child public key.
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Using an Extended Public Key on a Web Store
Let’s see how HD wallets are used by looking at Gabriel’s web store.

Gabriel first set up his web store as a hobby, based on a simple hosted WordPress
page. His store was quite basic with only a few pages and an order form with a single
Bitcoin address.

Gabriel used the first Bitcoin address generated by his regular wallet as the main
Bitcoin address for his store. Customers would submit an order using the form and
send payment to Gabriel’s published Bitcoin address, triggering an email with the
order details for Gabriel to process. With just a few orders each week, this system
worked well enough, even though it weakened the privacy of Gabriel, his clients, and
the people he paid.

However, the little web store became quite successful and attracted many orders from
the local community. Soon, Gabriel was overwhelmed. With all the orders paying
the same address, it became difficult to correctly match orders and transactions,
especially when multiple orders for the same amount came in close together.

The only metadata that is chosen by the receiver of a typical Bitcoin transaction are
the amount and payment address. There’s no subject or message field that can be used
to hold a unique identifier invoice number.

Gabriel’s HD wallet offers a much better solution through the ability to derive public
child keys without knowing the private keys. Gabriel can load an extended public
key (xpub) on his website, which can be used to derive a unique address for every
customer order. The unique address immediately improves privacy and also gives
each order a unique identifier that can be used for tracking which invoices have been
paid.

Using the HD wallet allows Gabriel to spend the funds from his personal wallet
application, but the xpub loaded on the website can only generate addresses and
receive funds. This feature of HD wallets is a great security feature. Gabriel’s website
does not contain any private keys and therefore any hack of it can only steal the funds
Gabriel would have received in the future, not any funds he received in the past.

To export the xpub from his Trezor hardware signing device, Gabriel uses the web-
based Trezor wallet application. The Trezor device must be plugged in for the public
keys to be exported. Note that most hardware signing devices will never export
private keys—those always remain on the device.

Gabriel copies the xpub to his web store’s Bitcoin payment processing software, such
as the widely used open source BTCPay Server.
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Hardened child key derivation
The ability to derive a branch of public keys from an xpub is very useful, but it comes
with a potential risk. Access to an xpub does not give access to child private keys.
However, because the xpub contains the chain code, if a child private key is known,
or somehow leaked, it can be used with the chain code to derive all the other child
private keys. A single leaked child private key, together with a parent chain code,
reveals all the private keys of all the children. Worse, the child private key together
with a parent chain code can be used to deduce the parent private key.

To counter this risk, HD wallets provide an alternative derivation function called
hardened derivation, which breaks the relationship between parent public key and
child chain code. The hardened derivation function uses the parent private key to
derive the child chain code, instead of the parent public key. This creates a “firewall”
in the parent/child sequence, with a chain code that cannot be used to compromise a
parent or sibling private key. The hardened derivation function looks almost identical
to the normal child private key derivation, except that the parent private key is used
as input to the hash function, instead of the parent public key, as shown in the
diagram in Figure 5-9.

Figure 5-9. Hardened derivation of a child key; omits the parent public key.

When the hardened private derivation function is used, the resulting child private
key and chain code are completely different from what would result from the normal
derivation function. The resulting “branch” of keys can be used to produce extended
public keys that are not vulnerable because the chain code they contain cannot be
exploited to reveal any private keys for their siblings or parents. Hardened derivation
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is therefore used to create a “gap” in the tree above the level where extended public
keys are used.

In simple terms, if you want to use the convenience of an xpub to derive branches of
public keys, without exposing yourself to the risk of a leaked chain code, you should
derive it from a hardened parent rather than a normal parent. As a best practice,
the level-1 children of the master keys are always derived through the hardened
derivation to prevent compromise of the master keys.

Index numbers for normal and hardened derivation
The index number used in the derivation function is a 32-bit integer. To easily
distinguish between keys created through the normal derivation function versus keys
derived through hardened derivation, this index number is split into two ranges.
Index numbers between 0 and 231 – 1 (0x0 to 0x7FFFFFFF) are used only for normal
derivation. Index numbers between 231 and 232 – 1 (0x80000000 to 0xFFFFFFFF) are
used only for hardened derivation. Therefore, if the index number is less than 231,
the child is normal, whereas if the index number is equal or above 231, the child is
hardened.

To make the index number easier to read and display, the index number for hard‐
ened children is displayed starting from zero, but with a prime symbol. The first
normal child key is therefore displayed as 0, whereas the first hardened child (index
0x80000000) is displayed as 0'. In a sequence then, the second hardened key would
have index 0x80000001 and would be displayed as 1', and so on. When you see an
HD wallet index i', that means 231+i. In regular ASCII text, the prime symbol is
substituted with either a single apostrophe or the letter h. For situations, such as in
output script descriptors, where text may be used in a shell or other context where a
single apostrophe has special meaning, using the letter h is recommended.

HD wallet key identifier (path)
Keys in an HD wallet are identified using a “path” naming convention, with each level
of the tree separated by a slash (/) character (see Table 5-8). Private keys derived from
the master private key start with “m.” Public keys derived from the master public key
start with “M.” Therefore, the first child private key of the master private key is m/0.
The first child public key is M/0. The second grandchild of the first child is m/0/1,
and so on.

The “ancestry” of a key is read from right to left, until you reach the master key from
which it was derived. For example, identifier m/x/y/z describes the key that is the z-th
child of key m/x/y, which is the y-th child of key m/x, which is the x-th child of m.
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Table 5-8. HD wallet path examples

HD path Key described
m/0 The first (0) child private key from the master private key (m)

m/0/0 The first grandchild private key from the first child (m/0)

m/0'/0 The first normal grandchild private key from the first hardened child (m/0')

m/1/0 The first grandchild private key from the second child (m/1)

M/23/17/0/0 The first great-great-grandchild public key from the first great-grandchild from the 18th grandchild from the
24th child

Navigating the HD wallet tree structure
The HD wallet tree structure offers tremendous flexibility. Each parent extended
key can have 4 billion children: 2 billion normal children and 2 billion hardened
children. Each of those children can have another 4 billion children, and so on. The
tree can be as deep as you want, with an infinite number of generations. With all
that flexibility, however, it becomes quite difficult to navigate this infinite tree. It
is especially difficult to transfer HD wallets between implementations because the
possibilities for internal organization into branches and subbranches are endless.

Two BIPs offer a solution to this complexity by creating some proposed standards for
the structure of HD wallet trees. BIP43 proposes the use of the first hardened child
index as a special identifier that signifies the “purpose” of the tree structure. Based on
BIP43, an HD wallet should use only one level-1 branch of the tree, with the index
number identifying the structure and namespace of the rest of the tree by defining its
purpose. For example, an HD wallet using only branch m/i'/ is intended to signify a
specific purpose, and that purpose is identified by index number “i.”

Extending that specification, BIP44 proposes a multiaccount structure as “purpose”
number 44' under BIP43. All HD wallets following the BIP44 structure are identified
by the fact that they only used one branch of the tree: m/44'/.

BIP44 specifies the structure as consisting of five predefined tree levels:

m / purpose' / coin_type' / account' / change / address_index

The first-level “purpose” is always set to 44'. The second-level “coin_type” specifies
the type of cryptocurrency coin, allowing for multicurrency HD wallets where each
currency has its own subtree under the second level. Bitcoin is m/44'/0' and Bitcoin
Testnet is m/44'/1'.

The third level of the tree is “account,” which allows users to subdivide their wallets
into separate logical subaccounts for accounting or organizational purposes. For
example, an HD wallet might contain two Bitcoin “accounts”: m/44'/0'/0' and
m/44'/0'/1'. Each account is the root of its own subtree.
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On the fourth level, “change,” an HD wallet has two subtrees, one for creating receiv‐
ing addresses and one for creating change addresses. Note that whereas the previous
levels used hardened derivation, this level uses normal derivation. This is to allow this
level of the tree to export extended public keys for use in a nonsecured environment.
Usable addresses are derived by the HD wallet as children of the fourth level, making
the fifth level of the tree the “address_index.” For example, the third receiving address
for payments in the primary account would be M/44'/0'/0'/0/2. Table 5-9 shows a
few more examples.

Table 5-9. BIP44 HD wallet structure examples

HD path Key described

M/44'/0'/0'/0/2 The third receiving public key for the primary Bitcoin account

M/44'/0'/3'/1/14 The fifteenth change-address public key for the fourth Bitcoin account

m/44'/2'/0'/0/1 The second private key in the Litecoin main account, for signing transactions

Many people focus on securing their bitcoins against theft and other attacks, but one
of the leading causes of lost bitcoins—perhaps the leading cause—is data loss. If the
keys and other essential data required to spend your bitcoins is lost, those bitcoins
will forever be unspendable. Nobody can get them back for you. In this chapter, we
looked at the systems that modern wallet applications use to help you prevent losing
that data. Remember, however, that it’s up to you to actually use the systems available
to make good backups and regularly test them.
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CHAPTER 6

Transactions

The way we typically transfer physical cash has little resemblance to the way we
transfer bitcoins. Physical cash is a bearer token. Alice pays Bob by handing him
some number of tokens, such as dollar bills. By comparison, bitcoins don’t exist either
physically or as digital data—Alice can’t hand Bob some bitcoins or send them by
email.

Instead, consider how Alice might transfer control over a parcel of land to Bob. She
can’t physically pick up the land and hand it to Bob. Rather there exists some sort of
record (usually maintained by a local government) that describes the land Alice owns.
Alice transfers that land to Bob by convincing the government to update the record to
say that Bob now owns the land.

Bitcoin works in a similar way. There exists a database on every Bitcoin full node that
says that Alice controls some number of bitcoins. Alice pays Bob by convincing full
nodes to update their database to say that some of Alice’s bitcoins are now controlled
by Bob. The data that Alice uses to convince full nodes to update their databases
is called a transaction. This is done without directly using either Alice’s or Bob’s
identities, as we’ll see in Chapter 7.

In this chapter we’ll deconstruct a Bitcoin transaction and examine each of its parts
to see how they facilitate the transfer of value in a way that’s highly expressive and
amazingly reliable.

A Serialized Bitcoin Transaction
In “Exploring and Decoding Transactions” on page 43, we used Bitcoin Core with the
txindex option enabled to retrieve a copy of Alice’s payment to Bob. Let’s retrieve the
transaction containing that payment again, as shown in Example 6-1.
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Example 6-1. Alice’s serialized transaction

$ bitcoin-cli getrawtransaction 466200308696215bbc949d5141a49a41\
38ecdfdfaa2a8029c1f9bcecd1f96177

01000000000101eb3ae38f27191aa5f3850dc9cad00492b88b72404f9da13569
8679268041c54a0100000000ffffffff02204e0000000000002251203b41daba
4c9ace578369740f15e5ec880c28279ee7f51b07dca69c7061e07068f8240100
000000001600147752c165ea7be772b2c0acb7f4d6047ae6f4768e0141cf5efe
2d8ef13ed0af21d4f4cb82422d6252d70324f6f4576b727b7d918e521c00b51b
e739df2f899c49dc267c0ad280aca6dab0d2fa2b42a45182fc83e81713010000
0000

Bitcoin Core’s serialization format is special because it’s the format used to make
commitments to transactions and to relay them across Bitcoin’s P2P network, but
otherwise programs can use a different format as long as they transmit all of the same
data. However, Bitcoin Core’s format is reasonably compact for the data it transmits
and simple to parse, so many other Bitcoin programs use this format.

The only other widely used transaction serialization format that
we’re aware of is the partially signed bitcoin transaction (PSBT)
format documented in BIPs 174 and 370 (with extensions docu‐
mented in other BIPs). PSBT allows an untrusted program to pro‐
duce a transaction template that can be verified and updated by
trusted programs (such as hardware signing devices) that have the
necessary private keys or other sensitive data to fill in the template.
To accomplish this, PSBT allows storing a significant amount of
metadata about a transaction, making it much less compact than
the standard serialization format. This book does not go into detail
about PSBT, but we strongly recommend it to developers of wallets
that plan to support signing with multiple keys.

The transaction displayed in hexadecimal in Example 6-1 is replicated as a byte map
in Figure 6-1. Note that it takes 64 hexadecimal characters to display 32 bytes. This
map shows only the top-level fields. We’ll examine each of them in the order they
appear in the transaction and describe any additional fields that they contain.
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Figure 6-1. A byte map of Alice’s transaction.

Version
The first four bytes of a serialized Bitcoin transaction are its version. The original
version of Bitcoin transactions was version 1 (0x01000000). All transactions in Bit‐
coin must follow the rules of version 1 transactions, with many of those rules being
described throughout this book.

Version 2 Bitcoin transactions were introduced in the BIP68 soft fork change to
Bitcoin’s consensus rules. BIP68 places additional constraints on the sequence field,
but those constraints only apply to transactions with version 2 or higher. Version 1
transactions are unaffected. BIP112, which was part of the same soft fork as BIP68,
upgraded an opcode (OP_CHECKSEQUENCEVERIFY), which will now fail if it is evaluated
as part of a transaction with a version less than 2. Beyond those two changes, version
2 transactions are identical to version 1 transactions.
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Protecting Presigned Transactions
The last step before broadcasting a transaction to the network for inclusion in the
blockchain is to sign it. However, it’s possible to sign a transaction without broadcast‐
ing it immediately. You can save that presigned transaction for months or years in the
belief that it can be added to the blockchain later when you do broadcast it. In the
interim, you may even lose access to the private key (or keys) necessary to sign an
alternative transaction spending the funds. This isn’t hypothetical: several protocols
built on Bitcoin, including Lightning Network, depend on presigned transactions.

This creates a challenge for protocol developers when they assist users in upgrading
the Bitcoin consensus protocol. Adding new constraints—such as BIP68 did to the
sequence field—may invalidate some presigned transactions. If there’s no way to
create a new signature for an equivalent transaction, then the money being spent in
the presigned transaction is permanently lost.

This problem is solved by reserving some transaction features for upgrades, such
as version numbers. Anyone creating presigned transactions prior to BIP68 should
have been using version 1 transactions, so only applying BIP68’s additional con‐
straints on sequence to transactions v2 or higher should not invalidate any presigned
transactions.

If you implement a protocol that uses presigned transactions, ensure that it doesn’t
use any features that are reserved for future upgrades. Bitcoin Core’s default transac‐
tion relay policy does not allow the use of reserved features. You can test whether
a transaction complies with that policy by using Bitcoin Core’s testmempoolaccept
RPC on Bitcoin mainnet.

As of this writing, a proposal to begin using version 3 transactions is being widely
considered. That proposal does not seek to change the consensus rules but only the
policy that Bitcoin full nodes use to relay transactions. Under the proposal, version
3 transactions would be subject to additional constraints in order to prevent certain
denial of service (DoS) attacks that we’ll discuss further in “Transaction Pinning” on
page 212.

Extended Marker and Flag
The next two fields of the example serialized transaction were added as part of the
segregated witness (segwit) soft fork change to Bitcoin’s consensus rules. The rules
were changed according to BIPs 141 and 143, but the extended serialization format is
defined in BIP144.
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If the transaction includes a witness structure (which we’ll describe in “Witness
Structure” on page 133), the marker must be zero (0x00) and the flag must be non‐
zero. In the current P2P protocol, the flag should always be one (0x01); alternative
flags are reserved for later protocol upgrades.

If the transaction doesn’t need a witness stack, the marker and flag must not be
present. This is compatible with the original version of Bitcoin’s transaction serializa‐
tion format, now called legacy serialization. For details, see “Legacy Serialization” on
page 142.

In legacy serialization, the marker byte would have been interpreted as the number of
inputs (zero). A transaction can’t have zero inputs, so the marker signals to modern
programs that extended serialization is being used. The flag field provides a similar
signal and also simplifies the process of updating the serialization format in the
future.

Inputs
The inputs field contains several other fields, so let’s start by showing a map of those
bytes in Figure 6-2.

Figure 6-2. Map of bytes in the inputs field of Alice’s transaction.

Length of Transaction Input List
The transaction input list starts with an integer indicating the number of inputs in
the transaction. The minimum value is one. There’s no explicit maximum value, but
restrictions on the maximum size of a transaction effectively limit transactions to a
few thousand inputs. The number is encoded as a compactSize unsigned integer.
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CompactSize Unsigned Integers
Unsigned integers in Bitcoin that often have low values, but which may sometimes
have high values, are usually encoded using the compactSize data type. CompactSize
is a version of a variable-length integer, so it’s sometimes called var_int or varint (see,
for example, documentation for BIPs 37 and 144).

Several varieties of variable length integers are used in differ‐
ent programs, including in different Bitcoin programs. For
example, Bitcoin Core serializes its UTXO database using a
data type it calls VarInts, which is different from compact‐
Size. Additionally, the nBits field in a Bitcoin block header is
encoded using a custom data type known as Compact, which
is unrelated to compactSize. When talking about the variable
length integers used in Bitcoin transaction serialization and
other parts of the Bitcoin P2P protocol, we will always use the
full name compactSize.

For numbers from 0 to 252, compactSize unsigned integers are identical to the
C-language data type uint8_t, which is probably the native encoding familiar to any
programmer. For other numbers up to 0xffffffffffffffff, a byte is prefixed to the num‐
ber to indicate its length—but otherwise the numbers look like regular C-language
encoded unsigned integers:

Value Bytes used Format

≥ 0 && ≤ 252 (0xfc) 1 uint8_t

≥ 253 && ≤ 0xffff 3 0xfd followed by the number as uint16_t

≥ 0x10000 && ≤ 0xffffffff 5 0xfe followed by the number as uint32_t

≥ 0x100000000 && ≤ 0xffffffffffffffff 9 0xff followed by the number as uint64_t

Each input in a transaction must contain three fields: an outpoint field, a length-
prefixed input script field, and a sequence

We’ll look at each of those fields in the following sections. Some inputs also include a
witness stack, but this is serialized at the end of a transaction so we’ll examine it later.

Outpoint
A Bitcoin transaction is a request for full nodes to update their database of coin
ownership information. For Alice to transfer control of some of her bitcoins to Bob,
she first needs to tell full nodes how to find the previous transfer where she received
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those bitcoins. Since control over bitcoins is assigned in transaction outputs, Alice
points to the previous output using an outpoint field. Each input must contain a single
outpoint.

The outpoint contains a 32-byte txid for the transaction where Alice received the
bitcoins she now wants to spend. This txid is in Bitcoin’s internal byte order for
hashes; see “Internal and Display Byte Orders” on page 126.

Because transactions may contain multiple outputs, Alice also needs to identify which
particular output from that transaction to use, called its output index. Output indexes
are 4-byte unsigned integers starting from zero.

When a full node encounters an outpoint, it uses that information to try to find
the referenced output. Full nodes are only required to look at earlier transactions
in the blockchain. For example, Alice’s transaction is included in block 774,958. A
full node verifying her transaction only looks for the previous output referenced
by her outpoint in that block and previous blocks, not any later blocks. Within
block 774,958, they will only look at transactions placed in the block prior to Alice’s
transaction, as determined by the order of leaves in the block’s merkle tree (see
“Merkle Trees” on page 252).

Upon finding the previous output, the full node obtains several critical pieces of
information from it:

• The amount of bitcoins assigned to that previous output. All of those bitcoins•
will be transferred in this transaction. In the example transaction, the value of the
previous output was 100,000 satoshis.

• The authorization conditions for that previous output. These are the conditions•
that must be fulfilled in order to spend the bitcoins assigned to that previous
output.

• For confirmed transactions, the height of the block that confirmed it and the•
median time past (MTP) for that block. This is required for relative timelocks
(described in “Sequence as a consensus-enforced relative timelock” on page 129)
and outputs of coinbase transactions (described in “Coinbase Transactions” on
page 139).

• Proof that the previous output exists in the blockchain (or as a known uncon‐•
firmed transaction) and that no other transaction has spent it. One of Bitcoin’s
consensus rules forbids any output from being spent more than once within a
valid blockchain. This is the rule against double spending: Alice can’t use the
same previous output to pay both Bob and Carol in separate transactions. Two
transactions that each try to spend the same previous output are called conflicting
transactions because only one of them can be included in a valid blockchain.
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Different approaches to tracking previous outputs have been tried by different full
node implementations at various times. Bitcoin Core currently uses the solution
believed to be most effective at retaining all necessary information while minimizing
disk space: it keeps a database that stores every UTXO and essential metadata about
it (like its confirmation block height). Each time a new block of transactions arrives,
all of the outputs they spend are removed from the UTXO database and all of the
outputs they create are added to the database.

Internal and Display Byte Orders
Bitcoin uses the output of hash functions, called digests, in various ways. Digests
provide unique identifiers for blocks and transactions; they’re used in commitments
for addresses, blocks, transactions, signatures, and more; and digests are iterated
upon in Bitcoin’s proof-of-work function. In some cases, hash digests are displayed
to users in one byte order but are used internally in a different byte order, creating
confusion. For example, consider the previous output txid from the outpoint in our
example transaction:

eb3ae38f27191aa5f3850dc9cad00492b88b72404f9da135698679268041c54a

If we try using that txid to retrieve that transaction using Bitcoin Core, we get an
error and must reverse its byte order:

$ bitcoin-cli getrawtransaction \
  eb3ae38f27191aa5f3850dc9cad00492b88b72404f9da135698679268041c54a
error code: -5
error message:
No such mempool or blockchain transaction.
Use gettransaction for wallet transactions.

$ echo eb3ae38f27191aa5f3850dc9cad00492b88b72404f9da135698679268041c54a \
  | fold -w2 | tac | tr -d "\n"
4ac541802679866935a19d4f40728bb89204d0cac90d85f3a51a19278fe33aeb

$ bitcoin-cli getrawtransaction \
  4ac541802679866935a19d4f40728bb89204d0cac90d85f3a51a19278fe33aeb
02000000000101c25ae90c9f3d40cc1fc509ecfd54b06e35450702...

This odd behavior is probably an unintentional consequence of a design decision in
early Bitcoin software. As a practical matter, it means developers of Bitcoin software
need to remember to reverse the order of bytes in transaction and block identifiers
they show to users.

In this book, we use the term internal byte order for the data that appears within
transactions and blocks. We use display byte order for the form displayed to users.
Another set of common terms is little-endian byte order for the internal version and
big-endian byte order for the display version.
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Input Script
The input script field is a remnant of the legacy transaction format. Our example
transaction input spends a native segwit output that doesn’t require any data in the
input script, so the length prefix for the input script is set to zero (0x00).

For an example of a length-prefixed input script that spends a legacy output, we use
one from an arbitrary transaction in the most recent block as of this writing:

6b483045022100a6cc4e8cd0847951a71fad3bc9b14f24d44ba59d19094e0a8c
fa2580bb664b020220366060ea8203d766722ed0a02d1599b99d3c95b97dab8e
41d3e4d3fe33a5706201210369e03e2c91f0badec46c9c903d9e9edae67c167b
9ef9b550356ee791c9a40896

The length prefix is a compactSize unsigned integer indicating the length of the
serialized input script field. In this case, it’s a single byte (0x6b) indicating the input
script is 107 bytes. We’ll cover parsing and using scripts in detail in Chapter 7.

Sequence
The final four bytes of an input are its sequence number. The use and meaning of this
field has changed over time.

Original sequence-based transaction replacement
The sequence field was originally intended to allow creation of multiple versions of
the same transaction, with later versions replacing earlier versions as candidates for
confirmation. The sequence number tracked the version of the transaction.

For example, imagine Alice and Bob want to bet on a game of cards. They start by
each signing a transaction that deposits some money into an output with a script that
requires signatures from both of them to spend, a multisignature script (multisig for
short). This is called the setup transaction. They then create a transaction that spends
that output:

• The first version of the transaction, with nSequence 0 (0x00000000), pays Alice•
and Bob back the money they initially deposited. This is called a refund transac‐
tion. Neither of them broadcasts the refund transaction at this time. They only
need it if there’s a problem.

• Alice wins the first round of the card game, so the second version of the transac‐•
tion, with sequence 1, increases the amount of money paid to Alice and decreases
Bob’s share. They both sign the updated transaction. Again, they don’t need to
broadcast this version of the transaction unless there’s a problem.

• Bob wins the second round, so the sequence is incremented to 2, Alice’s share is•
decreased, and Bob’s share is increased. They again sign but don’t broadcast.
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• After many more rounds where the sequence is incremented, the funds redistrib‐•
uted, and the resulting transaction is signed but not broadcast, they decide to
finalize the transaction. Creating a transaction with the final balance of funds,
they set sequence to its maximum value (0xffffffff), finalizing the transaction.
They broadcast this version of the transaction, it’s relayed across the network,
and eventually confirmed by miners.

We can see the replacement rules for sequence at work if we consider alternative
scenarios:

• Imagine that Alice broadcasts the final transaction, with a sequence of 0xffffffff,•
and then Bob broadcasts one of the earlier transactions where his balance was
higher. Because Bob’s version of the transaction has a lower sequence number,
full nodes using the original Bitcoin code won’t relay it to miners, and miners
who also used the original code won’t mine it.

• In another scenario, imagine that Bob broadcasts an earlier version of the trans‐•
action a few seconds before Alice broadcasts the final version. Nodes will relay
Bob’s version and miners will attempt to mine it, but when Alice’s version with
its higher sequence number arrives, nodes will also relay it and miners using the
original Bitcoin code will try to mine it instead of Bob’s version. Unless Bob got
lucky and a block was discovered before Alice’s version arrived, it’s Alice’s version
of the transaction that will get confirmed.

This type of protocol is what we now call a payment channel. Bitcoin’s creator, in
an email attributed to him, called these high-frequency transactions and described a
number of features added to the protocol to support them. We’ll learn about several
of those other features later and also discover how modern versions of payment
channels are increasingly being used in Bitcoin today.

There were a few problems with purely sequence-based payment channels. The first
was that the rules for replacing a lower-sequence transaction with a higher-sequence
transaction were only a matter of software policy. There was no direct incentive for
miners to prefer one version of the transaction over any other. The second problem
was that the first person to send their transaction might get lucky and have it
confirmed even if it wasn’t the highest-sequence transaction. A security protocol that
fails a few percent of the time due to bad luck isn’t a very effective protocol.

The third problem was that it was possible to replace one version of a transaction
with a different version an unlimited number of times. Each replacement would
consume the bandwidth of all the relaying full nodes on the network. For example,
as of this writing, there are about 50,000 relaying full nodes; an attacker creating
1,000 replacement transactions per minute at 200 bytes each would use about 20 KB
of their personal bandwidth but about 10 GB of full node network bandwidth every
minute. Except for the cost of their 20 KB/minute bandwidth and the occasional fee
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when a transaction got confirmed, the attacker wouldn’t need to pay any costs for the
enormous burden they placed on full node operators.

To eliminate the risk of this attack, the original type of sequence-based transaction
replacement was disabled in an early version of the Bitcoin software. For several
years, Bitcoin full nodes would not allow an unconfirmed transaction containing a
particular input (as indicated by its outpoint) to be replaced by a different transaction
containing the same input. However, that situation didn’t last forever.

Opt-in transaction replacement signaling
After the original sequence-based transaction replacement was disabled due to the
potential for abuse, a solution was proposed: programming Bitcoin Core and other
relaying full node software to allow a transaction that paid a higher transaction fee
rate to replace a conflicting transaction that paid a lower fee rate. This is called replace
by fee, or RBF for short. Some users and businesses objected to adding support for
transaction replacement back into Bitcoin Core, so a compromise was reached that
once again used the sequence field in support of replacement.

As documented in BIP125, an unconfirmed transaction with any input that has a
sequence set to a value below 0xfffffffe (i.e., at least 2 below the maximum value)
signals to the network that its signer wants it to be replaceable by a conflicting trans‐
action paying a higher fee rate. Bitcoin Core allowed those unconfirmed transactions
to be replaced and continued to disallow other transactions from being replaced.
This allowed users and businesses that objected to replacement to simply ignore
unconfirmed transactions containing the BIP125 signal until they became confirmed.

There’s more to modern transaction replacement policies than fee rates and sequence
signals, which we’ll see in “Replace By Fee (RBF) Fee Bumping” on page 207.

Sequence as a consensus-enforced relative timelock
In “Version” on page 121, we learned that the BIP68 soft fork added a new constraint
to transactions with version numbers 2 or higher. That constraint applies to the
sequence field.

Transaction inputs with sequence values less than 231 are interpreted as having a
relative timelock. Such a transaction may only be included in the blockchain once
the previous output (referenced by the outpoint) has aged by the relative timelock
amount. For example, a transaction with one input with a relative timelock of 30
blocks can only be confirmed in a block with at least 29 blocks between it and the
block containing the output being spent on the same blockchain. Since sequence is
a per-input field, a transaction may contain any number of timelocked inputs, all of
which must have sufficiently aged for the transaction to be valid. A disable flag allows
a transaction to include both inputs with a relative timelock (sequence < 231) and
inputs without a relative timelock (sequence ≥ 231).
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The sequence value is specified in either blocks or seconds. A type-flag is used to
differentiate between values counting blocks and values counting time in seconds.
The type-flag is set in the 23rd least-significant bit (i.e., value 1<<22). If the type-flag
is set, then the sequence value is interpreted as a multiple of 512 seconds. If the
type-flag is not set, the sequence value is interpreted as a number of blocks.

When interpreting sequence as a relative timelock, only the 16 least significant bits
are considered. Once the flags (bits 32 and 23) are evaluated, the sequence value is
usually “masked” with a 16-bit mask (e.g., sequence & 0x0000FFFF). The multiple
of 512 seconds is roughly equal to the average amount of time between blocks, so
the maximum relative timelock in both blocks and seconds from 16 bits (216) is a bit
more than one year.

Figure 6-3 shows the binary layout of the sequence value, as defined by BIP68.

Figure 6-3. BIP68 definition of sequence encoding (Source: BIP68).

Note that any transaction that sets a relative timelock using sequence also sends
the signal for opt-in replace by fee as described in “Opt-in transaction replacement
signaling” on page 129.

Outputs
The outputs field of a transaction contains several fields related to specific outputs.
Just as we did with the inputs field, we’ll start by looking at the specific bytes of the
outputs field from the example transaction where Alice pays Bob, displayed as a map
of those bytes in Figure 6-4.

Figure 6-4. A byte map of the outputs field from Alice’s transaction.
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Outputs Count
Identical to the start of the inputs section of a transaction, the outputs field begins
with a count indicating the number of outputs in this transaction. It’s a compactSize
integer and must be greater than zero.

The example transaction has two outputs.

Amount
The first field of a specific output is its amount, also called “value” in Bitcoin Core.
This is an 8-byte signed integer indicating the number of satoshis to transfer. A
satoshi is the smallest unit of bitcoin that can be represented in an onchain Bitcoin
transaction. There are 100 million satoshis in a bitcoin.

Bitcoin’s consensus rules allow an output to have a value as small as zero and as large
as 21 million bitcoins (2.1 quadrillion satoshis).

Uneconomical outputs and disallowed dust
Despite not having any value, a zero-value output can be spent under the same
rules as any other output. However, spending an output (using it as the input in a
transaction) increases the size of a transaction, which increases the amount of fee that
needs to be paid. If the value of the output is less than the cost of the additional fee,
then it doesn’t make economic sense to spend the output. Such outputs are known as
uneconomical outputs.

A zero-value output is always an uneconomical output; it wouldn’t contribute any
value to a transaction spending it even if the transaction’s fee rate was zero. However,
many other outputs with low values can be uneconomical as well, even unintention‐
ally. For example, at a typical fee rate on the network today, an output might add
more value to a transaction than it costs to spend—but tomorrow, fee rates might rise
and make the output uneconomical.

The need for full nodes to keep track of all UTXOs, as described in “Outpoint”
on page 124, means that every UTXO makes it slightly harder to run a full node.
For UTXOs containing significant value, there’s an incentive to eventually spend
them, so they aren’t a problem. But there’s no incentive for the person controlling an
uneconomical UTXO to ever spend it, potentially making it a perpetual burden on
operators of full nodes. Because Bitcoin’s decentralization depends on many people
being willing to run full nodes, several full node implementations such as Bitcoin
Core discourage the creation of uneconomical outputs using policies that affect the
relay and mining of unconfirmed transactions.
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The policies against relaying or mining transactions creating new uneconomical
outputs are called dust policies, based on a metaphorical comparison between outputs
with very small values and particles with very small size. Bitcoin Core’s dust policy
is complicated and contains several arbitrary numbers, so many programs we’re
aware of simply assume outputs with less than 546 satoshis are dust and will not be
relayed or mined by default. There are occasionally proposals to lower dust limits,
and counterproposals to raise them, so we encourage developers using presigned
transactions or multiparty protocols to check whether the policy has changed since
publication of this book.

Since Bitcoin’s inception, every full node has needed to keep a copy
of every UTXO, but that might not always be the case. Several
developers have been working on Utreexo, a project that allows full
nodes to store a commitment to the set of UTXOs rather than the
data itself. A minimal commitment might be only a kilobyte or two
in size—compare that to the over five gigabytes Bitcoin Core stores
as of this writing.
However, Utreexo will still require some nodes to store all UTXO
data, especially nodes serving miners and other operations that
need to quickly validate new blocks. That means uneconomical
outputs can still be a problem for full nodes even in a possible
future where most nodes use Utreexo.

Bitcoin Core’s policy rules about dust do have one exception: output scripts starting
with OP_RETURN, called data carrier outputs, can have a value of zero. The OP_RETURN
opcode causes the script to immediately fail no matter what comes after it, so these
outputs can never be spent. That means full nodes don’t need to keep track of them,
a feature Bitcoin Core takes advantage of to allow users to store small amounts of
arbitrary data in the blockchain without increasing the size of its UTXO database.
Since the outputs are unspendable, they aren’t uneconomical—any satoshis assigned
to them become permanently unspendable—so allowing the amount to be zero
ensures satoshis aren’t being destroyed.

Output Scripts
The output amount is followed by a compactSize integer indicating the length of the
output script, the script that contains the conditions that will need to be fulfilled in
order to spend the bitcoins. According to Bitcoin’s consensus rules, the minimum size
of an output script is zero.

The consensus maximum allowed size of an output script varies depending on when
it’s being checked. There’s no explicit limit on the size of an output script in the
output of a transaction, but a later transaction can only spend a previous output with
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a script of 10,000 bytes or smaller. Implicitly, an output script can be almost as large
as the transaction containing it, and a transaction can be almost as large as the block
containing it.

An output script with zero length can be spent by an input script
containing OP_TRUE. Anyone can create that input script, which
means anyone can spend an empty output script. There are an
essentially unlimited number of scripts that anyone can spend,
and they are known to Bitcoin protocol developers as anyone can
spends. Upgrades to Bitcoin’s script language often take an existing
anyone-can-spend script and add new constraints to it, making it
only spendable under the new conditions. Application developers
should never need to use an anyone-can-spend script, but if you
do, we highly recommend that you loudly announce your plans to
Bitcoin users and developers so that future upgrades don’t acciden‐
tally interfere with your system.

Bitcoin Core’s policy for relaying and mining transactions effectively limits output
scripts to just a few templates, called standard transaction outputs. This was originally
implemented after the discovery of several early bugs in Bitcoin related to the Script
language and is retained in modern Bitcoin Core to support anyone-can-spend
upgrades and to encourage the best practice of placing script conditions in P2SH
redeem scripts, segwit v0 witness scripts, and segwit v1 (taproot) leaf scripts.

We’ll look at each of the current standard transaction templates and learn how to
parse scripts in Chapter 7.

Witness Structure
In court, a witness is someone who testifies that they saw something important
happen. Human witnesses aren’t always reliable, so courts have various processes for
interrogating witnesses to (ideally) only accept evidence from those who are reliable.

Imagine what a witness would look like for a math problem. For example, if the
important problem was x + 2 == 4 and someone claimed they witnessed the solution,
what would we ask them? We’d want a mathematical proof that showed a value that
could be summed with two to equal four. We could even omit the need for a person
and just use the proposed value for x as our witness. If we were told that the witness
was two, then we could fill in the equation, check that it was correct, and decide that
the important problem had been solved.

When spending bitcoins, the important problem we want to solve is determining
whether the spend was authorized by the person or people who control those
bitcoins. The thousands of full nodes that enforce Bitcoin’s consensus rules can’t
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interrogate human witnesses, but they can accept witnesses that consist entirely of
data for solving math problems. For example, a witness of 2 will allow spending
bitcoins protected by the following script:

2 OP_ADD 4 OP_EQUAL

Obviously, allowing your bitcoins to be spent by anyone who can solve a simple equa‐
tion wouldn’t be secure. As we’ll see in Chapter 8, an unforgeable digital signature
scheme uses an equation that can only be solved by someone in possession of certain
data they’re able to keep secret. They’re able to reference that secret data using a
public identifier. That public identifier is called a public key and a solution to the
equation is called a signature.

The following script contains a public key and an opcode that requires a correspond‐
ing signature commit to the data in the spending transaction. Like the number 2 in
our simple example, the signature is our witness:

<public key> OP_CHECKSIG

Witnesses, the values used to solve the math problems that protect bitcoins, need to
be included in the transactions where they’re used in order for full nodes to verify
them. In the legacy transaction format used for all early Bitcoin transactions, signa‐
tures and other data are placed in the input script field. However, when developers
started to implement contract protocols on Bitcoin, such as we saw in “Original
sequence-based transaction replacement” on page 127, they discovered several signif‐
icant problems with placing witnesses in the input script field.

Circular Dependencies
Many contract protocols for Bitcoin involve a series of transactions that are signed
out of order. For example, Alice and Bob want to deposit funds into a script that can
only be spent with signatures from both of them, but they each also want to get their
money back if the other person becomes unresponsive. A simple solution is to sign
transactions out of order:

• Tx0 pays money from Alice and money from Bob into an output with a script•
that requires signatures from both Alice and Bob to spend.

• Tx1 spends the previous output to two outputs, one refunding Alice her money•
and one refunding Bob his money (minus a small amount for transaction fees).

• If Alice and Bob sign Tx1 before they sign Tx0, then they’re both guaranteed to•
be able to get a refund at any time. The protocol doesn’t require either of them to
trust the other, making it a trustless protocol.

A problem with this construction in the legacy transaction format is that every
field, including the input script field that contains signatures, is used to derive a
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transaction’s identifier (txid). The txid for Tx0 is part of the input’s outpoint in Tx1.
That means there’s no way for Alice and Bob to construct Tx1 until both signatures
for Tx0 are known—but if they know the signatures for Tx0, one of them can broad‐
cast that transaction before signing the refund transaction, eliminating the guarantee
of a refund. This is a circular dependency.

Third-Party Transaction Malleability
A more complex series of transactions can sometimes eliminate a circular depend‐
ency, but many protocols will then encounter a new concern: it’s often possible to
solve the same script in different ways. For example, consider our simple script from
“Witness Structure” on page 133:

2 OP_ADD 4 OP_EQUAL

We can make this script pass by providing the value 2 in an input script, but there are
several ways to put that value on the stack in Bitcoin. Here are just a few:

OP_2
OP_PUSH1 0x02
OP_PUSH2 0x0002
OP_PUSH3 0x000002
...
OP_PUSHDATA1 0x0102
OP_PUSHDATA1 0x020002
...
OP_PUSHDATA2 0x000102
OP_PUSHDATA2 0x00020002
...
OP_PUSHDATA4 0x0000000102
OP_PUSHDATA4 0x000000020002
...

Each alternative encoding of the number 2 in an input script will produce a slightly
different transaction with a completely different txid. Each different version of the
transaction spends the same inputs (outpoints) as every other version of the transac‐
tion, making them all conflict with each other. Only one version of a set of conflicting
transactions can be contained within a valid blockchain.

Imagine Alice creates one version of the transaction with OP_2 in the input script and
an output that pays Bob. Bob then immediately spends that output to Carol. Anyone
on the network can replace OP_2 with OP_PUSH1 0x02, creating a conflict with Alice’s
original version. If that conflicting transaction is confirmed, then there’s no way to
include Alice’s original version in the same blockchain, which means there’s no way
for Bob’s transaction to spend its output. Bob’s payment to Carol has been made
invalid even though neither Alice, Bob, nor Carol did anything wrong. Someone
not involved in the transaction (a third party) was able to change (mutate) Alice’s
transaction, a problem called unwanted third-party transaction malleability.
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There are cases when people want their transactions to be malle‐
able and Bitcoin provides several features to support that, most
notably the signature hashes (sighash) we’ll learn about in “Signa‐
ture Hash Types (SIGHASH)” on page 185. For example, Alice can
use a sighash to allow Bob to help her pay some transaction fees.
This mutates Alice’s transaction but only in a way that Alice wants.
For that reason, we will occasionally prefix the word unwanted to
the term transaction malleability. Even when we and other Bitcoin
technical writers use the shorter term, we’re almost certainly talk‐
ing about the unwanted variant of malleability.

Second-Party Transaction Malleability
When the legacy transaction format was the only transaction format, developers
worked on proposals to minimize third-party malleability, such as BIP62. However,
even if they were able to entirely eliminate third-party malleability, users of contract
protocols faced another problem: if they required a signature from someone else
involved in the protocol, that person could generate alternative signatures and change
the txid.

For example, Alice and Bob have deposited their money into a script requiring a
signature from both of them to spend. They’ve also created a refund transaction that
allows each of them to get their money back at any time. Alice decides she wants
to spend just some of the money, so she cooperates with Bob to create a chain of
transactions:

• Tx0 includes signatures from both Alice and Bob, spending its bitcoins to two•
outputs. The first output spends some of Alice’s money; the second output
returns the remainder of the bitcoins back to the script requiring Alice and
Bob’s signatures. Before signing this transaction, they create a new refund trans‐
action, Tx1.

• Tx1 spends the second output of Tx0 to two new outputs, one to Alice for her•
share of the joint funds, and one to Bob for his share. Alice and Bob both sign
this transaction before they sign Tx0.

There’s no circular dependency here and, if we ignore third-party transaction mallea‐
bility, this looks like it should provide us with a trustless protocol. However, it’s a
property of Bitcoin signatures that the signer has to choose a large random number
when creating their signature. Choosing a different random number will produce a
different signature even if everything being signed stays the same. It’s sort of like how,
if you provide a handwritten signature for two copies of the same contract, each of
those physical signatures will look slightly different.
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This mutability of signatures means that, if Alice tries to broadcast Tx0 (which con‐
tains Bob’s signature), Bob can generate an alternative signature to create a conflicting
transaction with a different txid. If Bob’s alternative version of Tx0 gets confirmed,
then Alice can’t use the presigned version of Tx1 to claim her refund. This type of
mutation is called unwanted second-party transaction malleability.

Segregated Witness
As early as 2011, protocol developers knew how to solve the problems of circular
dependence, third-party malleability, and second-party malleability. The idea was to
avoid including the input script in the calculation that produces a transaction’s txid.
Recall that an abstract name for the data held by an input script is a witness. The idea
of separating the rest of the data in a transaction from its witness for the purpose of
generating a txid is called segregated witness (segwit).

The obvious method for implementing segwit requires a change to Bitcoin’s consen‐
sus rules that would not be compatible with older full nodes, also called a hard fork.
Hard forks come with a lot of challenges, as we’ll discuss further in “Hard Forks” on
page 291.

An alternative approach to segwit was described in late 2015. This would use a
backward-compatible change to the consensus rules, called a soft fork. Backward
compatible means that full nodes implementing the change must not accept any
blocks that full nodes without the change would consider invalid. As long as they
obey that rule, newer full nodes can reject blocks that older full nodes would accept,
giving them the ability to enforce new consensus rules (but only if the newer full
nodes represent the economic consensus among Bitcoin users—we’ll explore the
details of upgrading Bitcoin’s consensus rules in Chapter 12).

The soft fork segwit approach is based on anyone-can-spend output scripts. A script
that starts with any of the numbers 0 to 16 and followed by 2 to 40 bytes of data is
defined as a segwit output script template. The number indicates its version (e.g., 0 is
segwit version 0, or segwit v0). The data is called a witness program. It’s also possible
to wrap the segwit template in a P2SH commitment, but we won’t deal with that in
this chapter.

From the perspective of old nodes, these output script templates can be spent with
an empty input script. From the perspective of a new node that is aware of the new
segwit rules, any payment to a segwit output script template must only be spent with
an empty input script. Notice the difference here: old nodes allow an empty input
script; new nodes require an empty input script.
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An empty input script keeps witnesses from affecting the txid, eliminating circular
dependencies, third-party transaction malleability, and second-party transaction mal‐
leability. But, with no ability to put data in an input script, users of segwit output
script templates need a new field. That field is called the witness structure.

The introduction of witness programs and the witness structure complicates Bitcoin,
but it follows an existing trend of increasing abstraction. Recall from Chapter 4 that
the original Bitcoin whitepaper describes a system where bitcoins were received to
public keys (pubkeys) and spent with signatures (sigs). The public key defined who
was authorized to spend the bitcoins (whoever controlled the corresponding private
key) and the signature provided authentication that the spending transaction came
from someone who controlled the private key. To make that system more flexible, the
initial release of Bitcoin introduced scripts that allow bitcoins to be received to output
scripts and spent with input scripts. Later experience with contract protocols inspired
allowing bitcoins to be received to witness programs and spent with the witness
structure. The terms and fields used in different versions of Bitcoin are shown in
Table 6-1.

Table 6-1. Terms used for authorization and authentication data in different parts of Bitcoin

Authorization Authentication

Whitepaper Public key Signature

Original (Legacy) Output script Input script

Segwit Witness program Witness structure

Witness Structure Serialization
Similar to the inputs and outputs fields, the witness structure contains other fields, so
we’ll start with a map of those bytes from Alice’s transaction in Figure 6-5.

Figure 6-5. A byte map of the witness structure from Alice’s transaction.
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Unlike the inputs and outputs fields, the overall witness structure doesn’t start with
any indication of the total number of witness stacks it contains. Instead, this is
implied by the inputs field—there’s one witness stack for every input in a transaction.

The witness structure for a particular input does start with a count of the number of
elements they contain. Those elements are called witness items. We’ll explore them in
detail in Chapter 7, but for now we need to know that each witness item is prefixed by
a compactSize integer indicating its size.

Legacy inputs don’t contain any witness items, so their witness stack consists entirely
of a count of zero (0x00).

Alice’s transaction contains one input and one witness item.

Lock Time
The final field in a serialized transaction is its lock time. This field was part of
Bitcoin’s original serialization format, but it was initially only enforced by Bitcoin’s
policy for choosing which transactions to mine. Bitcoin’s earliest known soft fork
added a rule that, starting at block height 31,000, forbid the inclusion of a transaction
in a block unless it satisfies one of the following rules:

• The transaction indicates that it should be eligible for inclusion in any block by•
setting its lock time to 0.

• The transaction indicates that it wants to restrict which blocks it can be included•
in by setting its lock time to a value less than 500,000,000. In this case, the
transaction can only be included in a block that has a height equal to the lock
time or higher. For example, a transaction with a lock time of 123,456 can be
included in block 123,456 or any later block.

• The transaction indicates that it wants to restrict when it can be included in•
the blockchain by setting its lock time to a value of 500,000,000 or greater.
In this case, the field is parsed as epoch time (the number of seconds since
1970-01-01T00:00 UTC) and the transaction can only be included in a block with
a median time past (MTP) greater than the lock time. MTP is normally about
an hour or two behind the current time. The rules for MTP are described in
“Median Time Past (MTP)” on page 280.

Coinbase Transactions
The first transaction in each block is a special case. Most older documentation
calls this a generation transaction, but most newer documentation calls it a coinbase
transaction (not to be confused with transactions created by the company named
“Coinbase”).
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Coinbase transactions are created by the miner of the block that includes them and
gives the miner the option to claim any fees paid by transactions in that block. Addi‐
tionally, up until block 6,720,000, miners are allowed to claim a subsidy consisting
of bitcoins that have never previously been circulated, called the block subsidy. The
total amount a miner can claim for a block—the combination of fees and subsidy—is
called the block reward.

Some of the special rules for coinbase transactions include:

• They may only have one input.•
• The single input must have an outpoint with a null txid (consisting entirely•

of zeros) and a maximal output index (0xffffffff). This prevents the coinbase
transaction from referencing a previous transaction output, which would (at the
very least) be confusing given that the coinbase transaction pays out fees and
subsidy.

• The field that would contain an input script in a normal transaction is called a•
coinbase. It’s this field that gives the coinbase transaction its name. The coinbase
field must be at least two bytes and not longer than 100 bytes. This script is
not executed but legacy transaction limits on the number of signature-checking
operations (sigops) do apply to it, so any arbitrary data placed in it should be
prefixed by a data-pushing opcode. Since a 2013 soft fork defined in BIP34,
the first few bytes of this field must follow additional rules we’ll describe in
“Coinbase Data” on page 272.

• The sum of the outputs must not exceed the value of the fees collected from all•
the transactions in that block plus the subsidy. The subsidy started at 50 BTC per
block and halves every 210,000 blocks (approximately every four years). Subsidy
values are rounded down to the nearest satoshi.

• Since the 2017 segwit soft fork documented in BIP141, any block that contains•
a transaction spending a segwit output must contain an output to the coinbase
transaction that commits to all of the transactions in the block (including their
witnesses). We’ll explore this commitment in Chapter 12.

A coinbase transaction can have any other outputs that would be valid in a nor‐
mal transaction. However, a transaction spending one of those outputs cannot be
included in any block until after the coinbase transaction has received 100 confirma‐
tions. This is called the maturity rule, and coinbase transaction outputs that don’t yet
have 100 confirmations are called immature.

Most Bitcoin software doesn’t need to deal with coinbase transactions, but their
special nature does mean they can occasionally be the cause of unusual problems in
software that’s not designed to expect them.
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Weight and Vbytes
Each Bitcoin block is limited in the amount of transaction data it can contain, so
most Bitcoin software needs to be able to measure the transactions it creates or pro‐
cesses. The modern unit of measurement for Bitcoin is called weight. An alternative
version of weight is vbytes, where four units of weight equal one vbyte, providing an
easy comparison to the original byte measurement unit used in legacy Bitcoin blocks.

Blocks are limited to 4 million weight. The block header takes up 240 weight. An
additional field, the transaction count, uses either 4 or 12 weight. All of the remaining
weight may be used for transaction data.

To calculate the weight of a particular field in a transaction, the size of that serialized
field in bytes is multiplied by a factor. To calculate the weight of a transaction,
sum together the weights of all of its fields. The factors for each of the fields in a
transaction are shown in Table 6-2. To provide an example, we also calculate the
weight of each field in this chapter’s example transaction from Alice to Bob.

The factors, and the fields to which they are applied, were chosen to reduce the
weight used when spending a UTXO. This helps discourage the creation of uneco‐
nomical outputs as described in “Uneconomical outputs and disallowed dust” on
page 131.

Table 6-2. Weight factors for all fields in a Bitcoin transaction

Field Factor Weight in Alice’s Tx

Version 4 16

Marker & Flag 1 2

Inputs Count 4 4

Outpoint 4 144

Input script 4 4

Sequence 4 16

Outputs Count 4 4

Amount 4 64 (2 outputs)

Output script 4 232 (2 outputs with different scripts)

Witness Count 1 1

Witness items 1 66

Lock time 4 16

Total N/A 569
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We can verify our weight calculation by getting the total for Alice’s transaction from
Bitcoin Core:

$ bitcoin-cli getrawtransaction 466200308696215bbc949d5141a49a41\
38ecdfdfaa2a8029c1f9bcecd1f96177 2 | jq .weight
569

Alice’s transaction from Example 6-1 at the beginning of this chapter is shown repre‐
sented in weight units in Figure 6-6. You can see the factor at work by comparing the
difference in size between the various fields in the two images.

Figure 6-6. A byte map of Alice’s transaction.

Legacy Serialization
The serialization format described in this chapter is used for the majority of new
Bitcoin transactions as of the writing of this book, but an older serialization format is
still used for many transactions. That older format, called legacy serialization, must be
used on the Bitcoin P2P network for any transaction with an empty witness structure
(which is only valid if the transaction doesn’t spend any witness programs).

Legacy serialization does not include the marker, flag, and witness structure fields.

In this chapter, we looked at each of the fields in a transaction and discovered how
they communicate to full nodes the details about the bitcoins to be transferred between
users. We only briefly looked at the output script, input script, and witness structure
that allow specifying and satisfying conditions that restrict who can spend what bitcoins.
Understanding how to construct and use these conditions is essential to ensuring that
only Alice can spend her bitcoins, so they will be the subject of the next chapter.
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CHAPTER 7

Authorization and Authentication

When you receive bitcoins, you have to decide who will have permission to spend
them, called authorization. You also have to decide how full nodes will distinguish
the authorized spenders from everyone else, called authentication. Your authorization
instructions and the spender proof of authentication will be checked by thousands of
independent full nodes, which all need to come to the same conclusion that a spend
was authorized and authenticated in order for the transaction containing it to be
valid.

The original description of Bitcoin used a public key for authorization. Alice paid
Bob by putting his public key in the output of a transaction. Authentication came
from Bob in the form of a signature that committed to a spending transaction, such
as from Bob to Carol.

The actual version of Bitcoin that was originally released provided a more flexible
mechanism for both authorization and authentication. Improvements since then have
only increased that flexibility. In this chapter, we’ll explore those features and see how
they’re most commonly used.

Transaction Scripts and Script Language
The original version of Bitcoin introduced a new programming language called
Script, a Forth-like stack-based language. Both the script placed in an output and
the legacy input script used in a spending transaction are written in this scripting
language.

Script is a very simple language. It requires minimal processing and cannot easily do
many of the fancy things modern programming languages can do.

143



When legacy transactions were the most commonly used type of transaction, the
majority of transactions processed through the Bitcoin network had the form “Pay‐
ment to Bob’s Bitcoin address” and used a script called a pay to public key hash
(P2PKH) script. However, Bitcoin transactions are not limited to the “Payment to
Bob’s Bitcoin address” script. In fact, scripts can be written to express a vast variety of
complex conditions. In order to understand these more complex scripts, we must first
understand the basics of transaction scripts and Script language.

In this section, we will demonstrate the basic components of the Bitcoin transaction
scripting language and show how it can be used to express conditions for spending
and how those conditions can be satisfied.

Bitcoin transaction validation is not based on a static pattern but
instead is achieved through the execution of a scripting language.
This language allows for a nearly infinite variety of conditions to be
expressed.

Turing Incompleteness
The Bitcoin transaction script language contains many operators, but is deliberately
limited in one important way—there are no loops or complex flow control capabili‐
ties other than conditional flow control. This ensures that the language is not Turing
Complete, meaning that scripts have limited complexity and predictable execution
times. Script is not a general-purpose language. These limitations ensure that the
language cannot be used to create an infinite loop or other form of “logic bomb” that
could be embedded in a transaction in a way that causes a denial-of-service attack
against the Bitcoin network. Remember, every transaction is validated by every full
node on the Bitcoin network. A limited language prevents the transaction validation
mechanism from being used as a vulnerability.

Stateless Verification
The Bitcoin transaction script language is stateless, in that there is no state prior to
execution of the script or state saved after execution of the script. All the information
needed to execute a script is contained within the script and the transaction executing
the script. A script will predictably execute the same way on any system. If your sys‐
tem verified a script, you can be sure that every other system in the Bitcoin network
will also verify the script, meaning that a valid transaction is valid for everyone and
everyone knows this. This predictability of outcomes is an essential benefit of the
Bitcoin system.
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Script Construction
Bitcoin’s legacy transaction validation engine relies on two parts of scripts to validate
transactions: an output script and an input script.

An output script specifies the conditions that must be met to spend the output in
the future, such as who is authorized to spend the output and how they will be
authenticated.

An input script is a script that satisfies the conditions placed in an output script
and allows the output to be spent. Input scripts are part of every transaction input.
Most of the time in legacy transactions they contain a digital signature produced by
the user’s wallet from his or her private key, but not all input scripts must contain
signatures.

Every Bitcoin validating node will validate transactions by executing the output and
input scripts. As we saw in Chapter 6, each input contains an outpoint that refers to
a previous transaction output. The input also contains an input script. The validation
software will copy the input script, retrieve the UTXO referenced by the input, and
copy the output script from that UTXO. The input and output scripts are then
executed together. The input is valid if the input script satisfies the output script’s
conditions (see “Separate execution of output and input scripts” on page 148). All the
inputs are validated independently as part of the overall validation of the transaction.

Note that the preceding steps involve making copies of all data. The original data in
the previous output and current input is never changed. In particular, the previous
output is invariable and unaffected by failed attempts to spend it. Only a valid
transaction that correctly satisfies the conditions of the output script results in the
output being considered as “spent.”

Figure 7-1 is an example of the output and input scripts for the most common type
of legacy Bitcoin transaction (a payment to a public key hash), showing the combined
script resulting from the concatenation of the scripts prior to validation.

Figure 7-1. Combining input and output scripts to evaluate a transaction script.

The script execution stack
Bitcoin’s scripting language is called a stack-based language because it uses a data
structure called a stack. A stack is a very simple data structure that can be visualized
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as a stack of cards. A stack has two base operations: push and pop. Push adds an item
on top of the stack. Pop removes the top item from the stack.

The scripting language executes the script by processing each item from left to right.
Numbers (data constants) are pushed onto the stack. Operators push or pop one or
more parameters from the stack, act on them, and might push a result onto the stack.
For example, OP_ADD will pop two items from the stack, add them, and push the
resulting sum onto the stack.

Conditional operators evaluate a condition, producing a boolean result of TRUE or
FALSE. For example, OP_EQUAL pops two items from the stack and pushes TRUE (TRUE
is represented by the number 1) if they are equal or FALSE (represented by 0) if they
are not equal. Bitcoin transaction scripts usually contain a conditional operator so
that they can produce the TRUE result that signifies a valid transaction.

A simple script
Now let’s apply what we’ve learned about scripts and stacks to some simple examples.

As we will see in Figure 7-2, the script 2 3 OP_ADD 5 OP_EQUAL demonstrates the
arithmetic addition operator OP_ADD, adding two numbers and putting the result
on the stack, followed by the conditional operator OP_EQUAL, which checks that the
resulting sum is equal to 5. For brevity, the OP_ prefix may sometimes be omitted
in examples in this book. For more details on the available script operators and
functions, see Bitcoin Wiki’s script page.

Although most legacy output scripts refer to a public key hash (essentially, a legacy
Bitcoin address), thereby requiring proof of ownership to spend the funds, the script
does not have to be that complex. Any combination of output and input scripts that
results in a TRUE value is valid. The simple arithmetic we used as an example of the
scripting language is also a valid script.

Use part of the arithmetic example script as the output script:

3 OP_ADD 5 OP_EQUAL

which can be satisfied by a transaction containing an input with the input script:

2

The validation software combines the scripts:

2 3 OP_ADD 5 OP_EQUAL

As we see in Figure 7-2, when this script is executed, the result is OP_TRUE, making
the transaction valid. Although this is a valid transaction output script, note that the
resulting UTXO can be spent by anyone with the arithmetic skills to know that the
number 2 satisfies the script.
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Figure 7-2. Bitcoin’s script validation doing simple math.
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Transactions are valid if the top result on the stack is TRUE, which is
any nonzero value. Transactions are invalid if the top value on the
stack is FALSE (the value zero or an empty stack), the script execu‐
tion is halted explicitly by an operator (such as VERIFY, OP_RETURN),
or the script was not semantically valid (such as containing an
OP_IF statement that was not terminated by an OP_ENDIF opcode).
For details, see Bitcoin Wiki’s script page.

The following is a slightly more complex script, which calculates 2 + 7 – 3 + 1. Notice
that when the script contains several operators in a row, the stack allows the results of
one operator to be acted upon by the next operator:

2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL

Try validating the preceding script yourself using pencil and paper. When the script
execution ends, you should be left with a TRUE value on the stack.

Separate execution of output and input scripts
In the original Bitcoin client, output and input scripts were concatenated and exe‐
cuted in sequence. For security reasons, this was changed in 2010 because of a
vulnerability known as the 1 OP_RETURN bug. In the current implementation, the
scripts are executed separately with the stack transferred between the two executions.

First, the input script is executed using the stack execution engine. If the input script
is executed without errors and has no operations left over, the stack is copied and
the output script is executed. If the result of executing the output script with the
stack data copied from the input script is TRUE, the input script has succeeded in
resolving the conditions imposed by the output script and, therefore, the input is a
valid authorization to spend the UTXO. If any result other than TRUE remains after
execution of the combined script, the input is invalid because it has failed to satisfy
the spending conditions placed on the output.

Pay to Public Key Hash
A pay to public key hash (P2PKH) script uses an output script that contains a hash
that commits to a public key. P2PKH is best known as the basis for a legacy Bitcoin
address. A P2PKH output can be spent by presenting a public key that matches the
hash commitment and a digital signature created by the corresponding private key
(see Chapter 8). Let’s look at an example of a P2PKH output script:

OP_DUP OP_HASH160 <Key Hash> OP_EQUALVERIFY OP_CHECKSIG
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The Key Hash is the data that would be encoded into a legacy base58check address.
Most applications would show the public key hash in a script using hexadecimal
encoding and not the familiar Bitcoin address base58check format that begins with
a “1.”

The preceding output script can be satisfied with an input script of the form:

<Signature> <Public Key>

The two scripts together would form the following combined validation script:

<Sig> <Pubkey> OP_DUP OP_HASH160 <Hash> OP_EQUALVERIFY OP_CHECKSIG

The result will be TRUE if the input script has a valid signature from Bob’s private key
that corresponds to the public key hash set as an encumbrance.

Figures 7-3 and 7-4 show (in two parts) a step-by-step execution of the combined
script, which will prove this is a valid transaction.

Figure 7-3. Evaluating a script for a P2PKH transaction (part 1 of 2).
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Figure 7-4. Evaluating a script for a P2PKH transaction (part 2 of 2).

Scripted Multisignatures
Multisignature scripts set a condition where k public keys are recorded in the script
and at least t of those must provide signatures to spend the funds, called t-of-k.
For example, a 2-of-3 multisignature is one where three public keys are listed as
potential signers and at least two of those must be used to create signatures for a valid
transaction to spend the funds.
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Some Bitcoin documentation, including earlier editions of this
book, uses the term “m-of-n” for a traditional multisignature. How‐
ever, it’s hard to tell “m” and “n” apart when they’re spoken, so we
use the alternative t-of-k. Both phrases refer to the same type of
signature scheme.

The general form of an output script setting a t-of-k multisignature condition is:

t <Public Key 1> <Public Key 2> ... <Public Key k> k OP_CHECKMULTISIG

where k is the total number of listed public keys and t is the threshold of required
signatures to spend the output.

An output script setting a 2-of-3 multisignature condition looks like this:

2 <Public Key A> <Public Key B> <Public Key C> 3 OP_CHECKMULTISIG

The preceding output script can be satisfied with an input script containing
signatures:

<Signature B> <Signature C>

or any combination of two signatures from the private keys corresponding to the
three listed public keys.

The two scripts together would form the combined validation script:

<Sig B> <Sig C> 2 <Pubkey A> <Pubkey B> <Pubkey C> 3 OP_CHECKMULTISIG

When executed, this combined script will evaluate to TRUE if the input script has two
valid signatures from private keys that correspond to two of the three public keys set
as an encumbrance.

At this time, Bitcoin Core’s transaction relay policy limits multisignature output
scripts to, at most, three listed public keys, meaning you can do anything from a
1-of-1 to a 3-of-3 multisignature or any combination within that range. You may
want to check the IsStandard() function to see what is currently accepted by the
network. Note that the limit of three keys applies only to standard (also known as
“bare”) multisignature scripts, not to scripts wrapped in another structure like P2SH,
P2WSH, or P2TR. P2SH multisignature scripts are limited by both policy and con‐
sensus to 15 keys, allowing for up to a 15-of-15 multisignature. We will learn about
P2SH in “Pay to Script Hash” on page 153. All other scripts are consensus limited
to 20 keys per OP_CHECKMULTISIG or OP_CHECKMULTISIGVERIFY opcode, although one
script may include multiple of those opcodes.
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An Oddity in CHECKMULTISIG Execution
There is an oddity in OP_CHECKMULTISIG’s execution that requires a slight work‐
around. When OP_CHECKMULTISIG executes, it should consume t + k + 2 items on the
stack as parameters. However, due to the oddity, OP_CHECKMULTISIG will pop an extra
value or one value more than expected.

Let’s look at this in greater detail using the previous validation example:

<Sig B> <Sig C> 2 <Pubkey A> <Pubkey B> <Pubkey C> 3 OP_CHECKMULTISIG

First, OP_CHECKMULTISIG pops the top item, which is k (in this example “3”). Then
it pops k items, which are the public keys that can sign; in this example, public keys
A, B, and C. Then, it pops one item, which is t, the quorum (how many signatures
are needed). Here t = 2. At this point, OP_CHECKMULTISIG should pop the final t
items, which are the signatures, and see if they are valid. However, unfortunately,
an oddity in the implementation causes OP_CHECKMULTISIG to pop one more item
(t + 1 total) than it should. The extra item is called the dummy stack element,
and it is disregarded when checking the signatures so it has no direct effect on
OP_CHECKMULTISIG itself. However, the dummy element must be present because, if
it isn’t present when OP_CHECKMULTISIG attempts to pop on an empty stack, it will
cause a stack error and script failure (marking the transaction as invalid). Because the
dummy element is disregarded, it can be anything. It became the custom early on to
use OP_0, which later became a relay policy rule and eventually a consensus rule (with
the enforcement of BIP147).

Because popping the dummy element is part of the consensus rules, it must now be
replicated forever. Therefore a script should look like this:

OP_0 <Sig B> <Sig C> 2 <Pubkey A> <Pubkey B> <Pubkey C> 3 OP_CHECKMULTISIG

Thus the input script actually used in multisig is not:

<Signature B> <Signature C>

but instead it is:

OP_0 <Sig B> <Sig C>

Some people believe this oddity was a bug in the original code for Bitcoin, but a
plausible alternative explanation exists. Verifying t-of-k signatures can require many
more than t or k signature checking operations. Let’s consider a simple example of
1-in-5, with the following combined script:

<dummy> <Sig4> 1 <key0> <key1> <key2> <key3> <key4> 5 OP_CHECKMULTISIG

The signature is checked first against key0, then key1, and then the other keys before
it is finally compared to its corresponding key4. That means five signature check‐
ing operations need to be performed even though there’s only one signature. One
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way to eliminate this redundancy would have been to provide OP_CHECKMULTISIG a
map indicating which provided signature corresponds to which public key, allowing
the OP_CHECKMULTISIG operation to only perform exactly t signature-checking opera‐
tions. It’s possible that Bitcoin’s original developer added the extra element (which we
now call the dummy stack element) in the original version of Bitcoin so they could
add the feature for allowing a map to be passed in a later soft fork. However, that
feature was never implemented, and the BIP147 update to the consensus rules in 2017
makes it impossible to add that feature in the future.

Only Bitcoin’s original developer could tell us whether the dummy stack element was
the result of a bug or a plan for a future upgrade. In this book, we simply call it an
oddity.

From now on, if you see a multisig script, you should expect to see an extra OP_0 in
the beginning, whose only purpose is as a workaround to an oddity in the consensus
rules.

Pay to Script Hash
Pay to script hash (P2SH) was introduced in 2012 as a powerful new type of operation
that greatly simplifies the use of complex scripts. To explain the need for P2SH, let’s
look at a practical example.

Mohammed is an electronics importer based in Dubai. Mohammed’s company uses
Bitcoin’s multisignature feature extensively for its corporate accounts. Multisignature
scripts are one of the most common uses of Bitcoin’s advanced scripting capabilities
and are a very powerful feature. Mohammed’s company uses a multisignature script
for all customer payments. Any payments made by customers are locked in such
a way that they require at least two signatures to release. Mohammed, his three part‐
ners, and their attorney can each provide one signature. A multisignature scheme like
that offers corporate governance controls and protects against theft, embezzlement,
or loss.

The resulting script is quite long and looks like this:

2 <Mohammed's Public Key> <Partner1 Public Key> <Partner2 Public Key>
<Partner3 Public Key> <Attorney Public Key> 5 OP_CHECKMULTISIG

Although multisignature scripts are a powerful feature, they are cumbersome to use.
Given the preceding script, Mohammed would have to communicate this script to
every customer prior to payment. Each customer would have to use special Bitcoin
wallet software with the ability to create custom transaction scripts. Furthermore,
the resulting transaction would be about five times larger than a simple payment
transaction, because this script contains very long public keys. The burden of that
extra data would be borne by the customer in the form of extra transaction fees.
Finally, a large transaction script like this would be carried in the UTXO set in every
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full node, until it was spent. All of these issues make using complex output scripts
difficult in practice.

P2SH was developed to resolve these practical difficulties and to make the use of
complex scripts as easy as a payment to a single-key Bitcoin address. With P2SH
payments, the complex script is replaced with a commitment, the digest of a crypto‐
graphic hash. When a transaction attempting to spend the UTXO is presented later,
it must contain the script that matches the commitment in addition to the data that
satisfies the script. In simple terms, P2SH means “pay to a script matching this hash, a
script that will be presented later when this output is spent.”

In P2SH transactions, the script that is replaced by a hash is referred to as the redeem
script because it is presented to the system at redemption time rather than as an
output script. Table 7-1 shows the script without P2SH and Table 7-2 shows the same
script encoded with P2SH.

Table 7-1. Complex script without P2SH
Output script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5 OP_CHECKMULTISIG

Input script Sig1 Sig2

Table 7-2. Complex script as P2SH
Redeem script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5 OP_CHECKMULTISIG

Output script OP_HASH160 <20-byte hash of redeem script> OP_EQUAL

Input script Sig1 Sig2 <redeem script>

As you can see from the tables, with P2SH, the complex script that details the
conditions for spending the output (redeem script) is not presented in the output
script. Instead, only a hash of it is in the output script, and the redeem script itself
is presented later as part of the input script when the output is spent. This shifts the
burden in fees and complexity from the spender to the receiver of the transaction.

Let’s look at Mohammed’s company, the complex multisignature script, and the
resulting P2SH scripts.

First, the multisignature script that Mohammed’s company uses for all incoming
payments from customers:

2 <Mohammed's Public Key> <Partner1 Public Key> <Partner2 Public Key>
<Partner3 Public Key> <Attorney Public Key> 5 OP_CHECKMULTISIG

This entire script can instead be represented by a 20-byte cryptographic hash by
first applying the SHA256 hashing algorithm and then applying the RIPEMD-160
algorithm on the result. For example, starting with the hash of Mohammed’s redeem
script:
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54c557e07dde5bb6cb791c7a540e0a4796f5e97e

A P2SH transaction locks the output to this hash instead of the longer redeem script,
using a special output script template:

OP_HASH160 54c557e07dde5bb6cb791c7a540e0a4796f5e97e OP_EQUAL

which, as you can see, is much shorter. Instead of “pay to this 5-key multisignature
script,” the P2SH equivalent transaction is “pay to a script with this hash.” A customer
making a payment to Mohammed’s company need only include this much shorter
output script in his payment. When Mohammed and his partners want to spend this
UTXO, they must present the original redeem script (the one whose hash locked the
UTXO) and the signatures necessary to unlock it, like this:

<Sig1> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG>

The two scripts are combined in two stages. First, the redeem script is checked
against the output script to make sure the hash matches:

<2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG> OP_HASH160 <script hash> OP_EQUAL

If the redeem script hash matches, the redeem script is executed:

<Sig1> <Sig2> 2 <PK1> <PK2> <PK3> <PK4> <PK5> 5 OP_CHECKMULTISIG

P2SH Addresses
Another important part of the P2SH feature is the ability to encode a script hash as
an address, as defined in BIP13. P2SH addresses are base58check encodings of the
20-byte hash of a script, just like Bitcoin addresses are base58check encodings of the
20-byte hash of a public key. P2SH addresses use the version prefix “5,” which results
in base58check-encoded addresses that start with a “3.”

For example, Mohammed’s complex script, hashed and base58check-encoded as a
P2SH address, becomes 39RF6JqABiHdYHkfChV6USGMe6Nsr66Gzw.

Now, Mohammed can give this “address” to his customers, and they can use almost
any Bitcoin wallet to make a simple payment, like any other Bitcoin address. The 3
prefix gives them a hint that this is a special type of address, one corresponding to
a script instead of a public key, but otherwise it works in exactly the same way as a
payment to any other Bitcoin address.

P2SH addresses hide all of the complexity so the person making a payment does not
see the script.

Benefits of P2SH
The P2SH feature offers the following benefits compared to the direct use of complex
scripts in outputs:
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• The similarity to original legacy addresses means the sender and the sender’s•
wallet don’t need complex engineering to implement P2SH.

• P2SH shifts the burden in data storage for the long script from the output (which•
additionally to being stored on the blockchain is in the UTXO set) to the input
(only stored on the blockchain).

• P2SH shifts the burden in data storage for the long script from the present time•
(payment) to a future time (when it is spent).

• P2SH shifts the transaction fee cost of a long script from the sender to the•
recipient, who has to include the long redeem script to spend it.

Redeem Script and Validation
You are not able to put a P2SH inside a P2SH redeem script because the P2SH speci‐
fication is not recursive. Also, while it is technically possible to include OP_RETURN
(see “Data Recording Output (OP_RETURN)” on page 156) in a redeem script, as
nothing in the rules prevents you from doing so, it is of no practical use because exe‐
cuting OP_RETURN during validation will cause the transaction to be marked invalid.

Note that because the redeem script is not presented to the network until you attempt
to spend a P2SH output, if you create an output with the hash of an invalid redeem
script, you will not be able to spend it. The spending transaction, which includes the
redeem script, will not be accepted because it is an invalid script. This creates a risk
because you can send bitcoin to a P2SH address that cannot be spent later.

P2SH output scripts contain the hash of a redeem script, which
gives no clues as to the content of the redeem script. The P2SH
output will be considered valid and accepted even if the redeem
script is invalid. You might accidentally receive bitcoin in such a
way that it cannot later be spent.

Data Recording Output (OP_RETURN)
Bitcoin’s distributed and timestamped blockchain has potential uses beyond pay‐
ments. Many developers have tried to use the transaction scripting language to take
advantage of the security and resilience of the system for applications such as digital
notary services. Early attempts to use Bitcoin’s script language for these purposes
involved creating transaction outputs that recorded data on the blockchain; for exam‐
ple, to record a commitment to a file in such a way that anyone could establish
proof-of-existence of that file on a specific date by reference to that transaction.
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The use of Bitcoin’s blockchain to store data unrelated to Bitcoin payments is a
controversial subject. Many people consider such use abusive and want to discourage
it. Others view it as a demonstration of the powerful capabilities of blockchain
technology and want to encourage such experimentation. Those who object to the
inclusion of nonpayment data argue that it burdens those running full Bitcoin nodes
with carrying the cost of disk storage for data that the blockchain was not intended
to carry. Moreover, such transactions may create UTXOs that cannot be spent, using
a legacy Bitcoin address as a freeform 20-byte field. Because the address is used for
data, it doesn’t correspond to a private key and the resulting UTXO can never be
spent; it’s a fake payment. These transactions that can never be spent are therefore
never removed from the UTXO set and cause the size of the UTXO database to
forever increase, or “bloat.”

A compromise was reached that allows an output script starting with OP_RETURN
to add nonpayment data to a transaction output. However, unlike the use of “fake”
UTXOs, the OP_RETURN operator creates an explicitly provably unspendable output,
which does not need to be stored in the UTXO set. OP_RETURN outputs are recorded
on the blockchain, so they consume disk space and contribute to the increase in the
blockchain’s size, but they are not stored in the UTXO set and therefore do not bloat
full nodes with the cost of more expensive database operations.

OP_RETURN scripts look like this:

OP_RETURN <data>

The data portion often represents a hash, such as the output from the SHA256 algo‐
rithm (32 bytes). Some applications put a prefix in front of the data to help identify
the application. For example, the Proof of Existence digital notarization service uses
the 8-byte prefix DOCPROOF, which is ASCII encoded as 44 4f 43 50 52 4f 4f 46 in
hexadecimal.

Keep in mind that there is no input script that corresponds to OP_RETURN that could
possibly be used to “spend” an OP_RETURN output. The whole point of an OP_RETURN
output is that you can’t spend the money locked in that output, and therefore it does
not need to be held in the UTXO set as potentially spendable: OP_RETURN outputs
are provably unspendable. OP_RETURN outputs usually have a zero amount because any
bitcoins assigned to such an output are effectively lost forever. If an OP_RETURN output
is referenced as an input in a transaction, the script validation engine will halt the
execution of the validation script and mark the transaction as invalid. The execution
of OP_RETURN essentially causes the script to “RETURN” with a FALSE and halt. Thus,
if you accidentally reference an OP_RETURN output as an input in a transaction, that
transaction is invalid.
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Transaction Lock Time Limitations
Use of the lock time allows a spender to restrict a transaction from being included
in a block until a specific block height, but it does not prevent spending the funds in
another transaction earlier than that. Let’s explain that with the following example.

Alice signs a transaction spending one of her outputs to Bob’s address and sets the
transaction lock time to 3 months in the future. Alice sends that transaction to Bob to
hold. With this transaction Alice and Bob know that:

• Bob cannot transmit the transaction to redeem the funds until 3 months have•
elapsed.

• Bob may transmit the transaction after 3 months.•

However:

• Alice can create a conflicting transaction, spending the same inputs without a•
lock time. Thus, Alice can spend the same UTXO before the 3 months have
elapsed.

• Bob has no guarantee that Alice won’t do that.•

It is important to understand the limitations of transaction lock time. The only
guarantee is that Bob will not be able to redeem the presigned transaction before 3
months have elapsed. There is no guarantee that Bob will get the funds. One way to
guarantee that Bob will receive the funds but cannot spend them until 3 months have
elapsed is to place the timelock restriction on the UTXO itself as part of the script,
rather than on the transaction. This is achieved by the next form of timelock, called
Check Lock Time Verify.

Check Lock Time Verify (OP_CLTV)
In December 2015, a new form of timelock was introduced to Bitcoin as a soft fork
upgrade. Based on a specification in BIP65, a new script operator called OP_CHECK
LOCKTIMEVERIFY (OP_CLTV) was added to the scripting language. OP_CLTV is a per-
output timelock rather than a per-transaction timelock, as is the case with lock time.
This allows for additional flexibility in the way timelocks are applied.

In simple terms, by committing to the OP_CLTV opcode in an output, that output is
restricted so that it can only be spent after the specified time has elapsed.

OP_CLTV doesn’t replace lock time, but rather restricts specific UTXOs such that they
can only be spent in a future transaction with lock time set to a greater or equal value.
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The OP_CLTV opcode takes one parameter as input, expressed as a number in the same
format as lock time (either a block height or Unix epoch time). As indicated by the
VERIFY suffix, OP_CLTV is the type of opcode that halts execution of the script if the
outcome is FALSE. If it results in TRUE, execution continues.

In order to use OP_CLTV, you insert it into the redeem script of the output in the
transaction that creates the output. For example, if Alice is paying Bob, he might
usually accept payment to the following P2SH script:

<Bob's public key> OP_CHECKSIG

To lock it to a time, say 3 months from now, his P2SH script would instead be:

<Bob's pubkey> OP_CHECKSIGVERIFY <now + 3 months> OP_CHECKLOCKTIMEVERIFY

where <now + 3 months> is a block height or time value estimated 3 months from the
time the transaction is mined: current block height + 12,960 (blocks) or current Unix
epoch time + 7,760,000 (seconds).

When Bob tries to spend this UTXO, he constructs a transaction that references the
UTXO as an input. He uses his signature and public key in the input script of that
input and sets the transaction lock time to be equal or greater to the timelock in
the OP_CHECKLOCKTIMEVERIFY Alice set. Bob then broadcasts the transaction on the
Bitcoin network.

Bob’s transaction is evaluated as follows. If the OP_CHECKLOCKTIMEVERIFY parameter
Alice set is less than or equal to the spending transaction’s lock time, script execution
continues (acts as if a no operation or OP_NOP opcode was executed). Otherwise, script
execution halts and the transaction is deemed invalid.

More precisely, BIP65 explains that OP_CHECKLOCKTIMEVERIFY fails and halts execu‐
tion if one of the following occurs:

• The stack is empty.•
• The top item on the stack is less than 0.•
• The lock-time type (height versus timestamp) of the top stack item and the lock•

time field are not the same.
• The top stack item is greater than the transaction’s lock time field.•
• The sequence field of the input is 0xffffffff.•

Data Recording Output (OP_RETURN) | 159



Timelock Conflicts
OP_CLTV and lock time use the same format to describe timelocks, either a block
height or the time elapsed in seconds since the Unix epoch. Critically, when used
together, the format of lock time must match that of OP_CLTV in the outputs—they
must both reference either block height or time in seconds.

This implies that a script can never be valid if it must execute two different calls to
OP_CLTV, one that uses a height and one that uses a time. It can be easy to make this
mistake when writing advanced scripts, so be sure to thoroughly test your scripts on a
test network or use a tool designed to prevent this issue, like a Miniscript compiler.

An additional implication is that only one variety of OP_CLTV can be used in any of
the scripts of a transaction. If the script for one input uses the height variety and a
different script for a different input uses the time variety, there is no way to construct
a valid transaction that spends both inputs.

After execution, if OP_CLTV is satisfied, the parameter that preceded it remains as
the top item on the stack and may need to be dropped, with OP_DROP, for correct
execution of subsequent script opcodes. You will often see OP_CHECKLOCKTIMEVERIFY
followed by OP_DROP in scripts for this reason. OP_CLTV, like OP_CSV (see “Relative
Timelocks” on page 160) are unlike other CHECKVERIFY opcodes in leaving items on
the stack because the soft forks that added them redefined existing opcodes that
did not drop stack items, and the behavior of those previous no-operation (NOP)
opcodes must be preserved.

By using lock time in conjunction with OP_CLTV, the scenario described in “Trans‐
action Lock Time Limitations” on page 158 changes. Alice sends her transaction
immediately, assigning the funds to Bob’s key. Alice can no longer spend the money,
but Bob cannot spend it before the 3-month lock time has expired.

By introducing timelock functionality directly into the scripting language, OP_CLTV
allows us to develop some very interesting complex scripts.

The standard is defined in BIP65 (OP_CHECKLOCKTIMEVERIFY).

Relative Timelocks
Lock time and OP_CLTV are both absolute timelocks in that they specify an absolute
point in time. The next two timelock features we will examine are relative timelocks
in that they specify, as a condition of spending an output, an elapsed time from the
confirmation of the output in the blockchain.
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Relative timelocks are useful because they allow imposing a time constraint on one
transaction that is dependent on the elapsed time from the confirmation of a previous
transaction. In other words, the clock doesn’t start counting until the UTXO is
recorded on the blockchain. This functionality is especially useful in bidirectional
state channels and Lightning Networks (LNs), as we will see in “Payment Channels
and State Channels” on page 318.

Relative timelocks, like absolute timelocks, are implemented with both a transaction-
level feature and a script-level opcode. The transaction-level relative timelock is
implemented as a consensus rule on the value of sequence, a transaction field that
is set in every transaction input. Script-level relative timelocks are implemented with
the OP_CHECKSEQUENCEVERIFY (OP_CSV) opcode.

Relative timelocks are implemented according to the specifications in BIP68,
Relative Lock-Time Using Consensus-Enforced Sequence Numbers and BIP112,
OP_CHECKSEQUENCEVERIFY.

BIP68 and BIP112 were activated in May 2016 as a soft fork upgrade to the consensus
rules.

Relative Timelocks with OP_CSV
Just like OP_CLTV and lock time, there is a script opcode for relative timelocks that
leverages the sequence value in scripts. That opcode is OP_CHECKSEQUENCEVERIFY,
commonly referred to as OP_CSV for short.

The OP_CSV opcode when evaluated in a UTXO’s script allows spending only in
a transaction whose input sequence value is greater than or equal to the OP_CSV
parameter. Essentially, this restricts spending the UTXO until a certain number of
blocks or seconds have elapsed relative to the time the UTXO was mined.

As with CLTV, the value in OP_CSV must match the format in the corresponding
sequence value. If OP_CSV is specified in terms of blocks, then so must sequence. If
OP_CSV is specified in terms of seconds, then so must sequence.

A script executing multiple OP_CSV opcodes must only use the
same variety, either time-based or height-based. Mixing varieties
will produce an invalid script that can never be spent, the same
problem we saw with OP_CLTV in “Timelock Conflicts” on page 160.
However, OP_CSV allows any two valid inputs to be included in the
same transaction, so the problem of interaction across inputs that
occurs with OP_CLTV doesn’t affect OP_CSV.
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Relative timelocks with OP_CSV are especially useful when several (chained) trans‐
actions are created and signed but not propagated—that is, they’re kept off the
blockchain (offchain). A child transaction cannot be used until the parent transaction
has been propagated, mined, and aged by the time specified in the relative timelock.
One application of this use case is shown in “Payment Channels and State Channels”
on page 318 and “Routed Payment Channels (Lightning Network)” on page 332.

OP_CSV is defined in detail in BIP112, CHECKSEQUENCEVERIFY.

Scripts with Flow Control (Conditional Clauses)
One of the more powerful features of Bitcoin Script is flow control, also known as
conditional clauses. You are probably familiar with flow control in various program‐
ming languages that use the construct IF…THEN…ELSE. Bitcoin conditional clauses look
a bit different but are essentially the same construct.

At a basic level, Bitcoin conditional opcodes allow us to construct a script that has
two ways of being unlocked, depending on a TRUE/FALSE outcome of evaluating a
logical condition. For example, if x is TRUE, the executed code path is A and the ELSE
code path is B.

Additionally, Bitcoin conditional expressions can be “nested” indefinitely, meaning
that a conditional clause can contain another within it, which contains another,
etc. Bitcoin Script flow control can be used to construct very complex scripts with
hundreds of possible execution paths. There is no limit to nesting, but consensus
rules impose a limit on the maximum size of a script in bytes.

Bitcoin implements flow control using the OP_IF, OP_ELSE, OP_ENDIF, and OP_NOTIF
opcodes. Additionally, conditional expressions can contain boolean operators such as
OP_BOOLAND, OP_BOOLOR, and OP_NOT.

At first glance, you may find the Bitcoin’s flow control scripts confusing. That is
because Bitcoin Script is a stack language. The same way that 1 + 1 looks “backward”
when expressed as 1 1 OP_ADD, flow control clauses in Bitcoin also look “backward.”

In most traditional (procedural) programming languages, flow control looks like this:

if (condition):
  code to run when condition is true
else:
  code to run when condition is false
endif
code to run in either case

In a stack-based language like Bitcoin Script, the logical condition comes before the
IF, which makes it look “backward”:
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condition
IF
  code to run when condition is true
OP_ELSE
  code to run when condition is false
OP_ENDIF
code to run in either case

When reading Bitcoin Script, remember that the condition being evaluated comes
before the IF opcode.

Conditional Clauses with VERIFY Opcodes
Another form of conditional in Bitcoin Script is any opcode that ends in VERIFY.
The VERIFY suffix means that if the condition evaluated is not TRUE, execution of the
script terminates immediately and the transaction is deemed invalid.

Unlike an IF clause, which offers alternative execution paths, the VERIFY suffix acts as
a guard clause, continuing only if a precondition is met.

For example, the following script requires Bob’s signature and a preimage (secret) that
produces a specific hash. Both conditions must be satisfied to unlock:

OP_HASH160 <expected hash> OP_EQUALVERIFY <Bob's Pubkey> OP_CHECKSIG

To spend this, Bob must present a valid preimage and a signature:

<Bob's Sig> <hash pre-image>

Without presenting the preimage, Bob can’t get to the part of the script that checks
for his signature.

This script can be written with an OP_IF instead:

OP_HASH160 <expected hash> OP_EQUAL
OP_IF
   <Bob's Pubkey> OP_CHECKSIG
OP_ENDIF

Bob’s authentication data is identical:

<Bob's Sig> <hash pre-image>

The script with OP_IF does the same thing as using an opcode with a VERIFY suffix;
they both operate as guard clauses. However, the VERIFY construction is more effi‐
cient, using two fewer opcodes.

So, when do we use VERIFY and when do we use OP_IF? If all we are trying to do is
to attach a precondition (guard clause), then VERIFY is better. If, however, we want to
have more than one execution path (flow control), then we need an OP_IF…OP_ELSE
flow control clause.
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Using Flow Control in Scripts
A very common use for flow control in Bitcoin Script is to construct a script that
offers multiple execution paths, each a different way of redeeming the UTXO.

Let’s look at a simple example where we have two signers, Alice and Bob, and either
one is able to redeem. With multisig, this would be expressed as a 1-of-2 multisig
script. For the sake of demonstration, we will do the same thing with an OP_IF clause:

OP_IF
 <Alice's Pubkey>
OP_ELSE
 <Bob's Pubkey>
OP_ENDIF
OP_CHECKSIG

Looking at this redeem script, you may be wondering: “Where is the condition?
There is nothing preceding the IF clause!”

The condition is not part of the script. Instead, the condition will be offered at
spending time, allowing Alice and Bob to “choose” which execution path they want:

<Alice's Sig> OP_TRUE

The OP_TRUE at the end serves as the condition (TRUE) that will make the OP_IF clause
execute the fist redemption path. This conditions puts the public key on the stack for
which Alice has a signature. The OP_TRUE opcode, also known as OP_1, will put the
number 1 on the stack.

For Bob to redeem this, he would have to choose the second execution path in OP_IF
by giving a FALSE value. The OP_FALSE opcode, also known as OP_0, pushes an empty
byte array to the stack:

<Bob's Sig> OP_FALSE

Bob’s input script causes the OP_IF clause to execute the second (OP_ELSE) script,
which requires Bob’s signature.

Since OP_IF clauses can be nested, we can create a “maze” of execution paths. The
input script can provide a “map” selecting which execution path is actually executed:

OP_IF
  subscript A
OP_ELSE
  OP_IF
    subscript B
  OP_ELSE
    subscript C
  OP_ENDIF
OP_ENDIF
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In this scenario, there are three execution paths (subscript A, subscript B, and
subscript C). The input script provides a path in the form of a sequence of TRUE
or FALSE values. To select path subscript B, for example, the input script must end
in OP_1 OP_0 (TRUE, FALSE). These values will be pushed onto the stack so that the
second value (FALSE) ends up at the top of the stack. The outer OP_IF clause pops the
FALSE value and executes the first OP_ELSE clause. Then the TRUE value moves to the
top of the stack and is evaluated by the inner (nested) OP_IF, selecting the B execution
path.

Using this construct, we can build redeem scripts with tens or hundreds of execution
paths, each offering a different way to redeem the UTXO. To spend, we construct an
input script that navigates the execution path by putting the appropriate TRUE and
FALSE values on the stack at each flow control point.

Complex Script Example
In this section we combine many of the concepts from this chapter into a single
example.

Mohammed, a company owner in Dubai, operates an import/export business; he
wishes to construct a company capital account with flexible rules. The scheme he
creates requires different levels of authorization depending on timelocks. The partici‐
pants in the multisig scheme are Mohammed, his two partners Saeed and Zaira, and
their company lawyer. The three partners make decisions based on a majority rule,
so two of the three must agree. However, in the case of a problem with their keys,
they want their lawyer to be able to recover the funds with one of the three partner
signatures. Finally, if all partners are unavailable or incapacitated for a while, they
want the lawyer to be able to manage the account directly after he gains access to the
capital account’s transaction records.

Example 7-1 is the redeem script that Mohammed designs to achieve this (line
numbers have been prefixed).

Example 7-1. Variable multi-signature with timelock

01  OP_IF
02    OP_IF
03      2
04    OP_ELSE
05      <30 days> OP_CHECKSEQUENCEVERIFY OP_DROP
06      <Lawyer's Pubkey> OP_CHECKSIGVERIFY
07      1
08    OP_ENDIF
09    <Mohammed's Pubkey> <Saeed's Pubkey> <Zaira's Pubkey> 3 OP_CHECKMULTISIG
10  OP_ELSE
11    <90 days> OP_CHECKSEQUENCEVERIFY OP_DROP
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12    <Lawyer's Pubkey> OP_CHECKSIG
13  OP_ENDIF

Mohammed’s script implements three execution paths using nested OP_IF…OP_ELSE
flow control clauses.

In the first execution path, this script operates as a simple 2-of-3 multisig with the
three partners. This execution path consists of lines 3 and 9. Line 3 sets the quorum
of the multisig to 2 (2-of-3). This execution path can be selected by putting OP_TRUE
OP_TRUE at the end of the input script:

OP_0 <Mohammed's Sig> <Zaira's Sig> OP_TRUE OP_TRUE

The OP_0 at the beginning of this input script is because of an
oddity in OP_CHECKMULTISIG that pops an extra value from the
stack. The extra value is disregarded by the OP_CHECKMULTISIG,
but it must be present or the script fails. Pushing an empty byte
array with OP_0 is a workaround to the oddity, as described in “An
Oddity in CHECKMULTISIG Execution” on page 152.

The second execution path can only be used after 30 days have elapsed from the
creation of the UTXO. At that time, it requires the signature of the lawyer and one
of the three partners (a 1-of-3 multisig). This is achieved by line 7, which sets the
quorum for the multisig to 1. To select this execution path, the input script would end
in OP_FALSE OP_TRUE:

OP_0 <Saeed's Sig> <Lawer's Sig> OP_FALSE OP_TRUE

Why OP_FALSE OP_TRUE? Isn’t that backward? FALSE is pushed onto
the stack, and TRUE is pushed on top of it. TRUE is therefore popped
first by the first OP_IF opcode.

Finally, the third execution path allows the lawyer to spend the funds alone, but only
after 90 days. To select this execution path, the input script has to end in OP_FALSE:

<Lawyer's Sig> OP_FALSE

Try running the script on paper to see how it behaves on the stack.

Segregated Witness Output and Transaction Examples
Let’s look at some of our example transactions and see how they would change with
segregated witness. We’ll first look at how a P2PKH payment can be accomplished as
the segregated witness program. Then, we’ll look at the segregated witness equivalent

166 | Chapter 7: Authorization and Authentication



for P2SH scripts. Finally, we’ll look at how both of the preceding segregated witness
programs can be embedded inside a P2SH script.

Pay to witness public key hash (P2WPKH)
Let’s start by looking at the example of a P2PKH output script:

OP_DUP OP_HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
OP_EQUALVERIFY OP_CHECKSIG

With segregated witness, Alice would create a P2WPKH script. If that script commits
to the same public key, it would look like this:

0 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

As you can see, a P2WPKH output script is much simpler than the P2PKH equiva‐
lent. It consists of two values that are pushed onto the script evaluation stack. To an
old (nonsegwit-aware) Bitcoin client, the two pushes would look like an output that
anyone can spend. To a newer, segwit-aware client, the first number (0) is interpreted
as a version number (the witness version) and the second part (20 bytes) is a witness
program. The 20-byte witness program is simply the hash of the public key, as in a
P2PKH script.

Now, let’s look at the corresponding transaction that Bob uses to spend this output.
For the original script, the spending transaction would have to include a signature
within the transaction input:

[...]
"vin" : [
  "txid": "abcdef12345...",
  "vout": 0,
  "scriptSig": “<Bob’s scriptSig>”,
]
[...]

However, to spend the P2WPKH output, the transaction has no signature on that
input. Instead, Bob’s transaction has an empty input script and includes a witness
structure:

[...]
"vin" : [
  "txid": "abcdef12345...",
  "vout": 0,
  "scriptSig": “”,
]
[...]
“witness”: “<Bob’s witness structure>”
[...]
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Wallet construction of P2WPKH
It is extremely important to note that P2WPKH witness programs should only be
created by the receiver and not converted by the spender from a known public key,
P2PKH script, or address. The spender has no way of knowing if the receiver’s wallet
has the ability to construct segwit transactions and spend P2WPKH outputs.

Additionally, P2WPKH outputs must be constructed from the hash of a compressed
public key. Uncompressed public keys are nonstandard in segwit and may be explic‐
itly disabled by a future soft fork. If the hash used in the P2WPKH came from an
uncompressed public key, it may be unspendable and you may lose funds. P2WPKH
outputs should be created by the payee’s wallet by deriving a compressed public key
from their private key.

P2WPKH should be constructed by the receiver by converting a
compressed public key to a P2WPKH hash. Neither the spender
nor anyone else should ever transform a P2PKH script, Bitcoin
address, or uncompressed public key to a P2WPKH witness script.
In general, a spender should only send to the receiver in the man‐
ner that the receiver indicated.

Pay to witness script hash (P2WSH)
The second type of segwit v0 witness program corresponds to a P2SH script. We
saw this type of script in “Pay to Script Hash” on page 153. In that example, P2SH
was used by Mohammed’s company to express a multisignature script. Payments to
Mohammed’s company were encoded with a script like this:

OP_HASH160 54c557e07dde5bb6cb791c7a540e0a4796f5e97e OP_EQUAL

This P2SH script references the hash of a redeem script that defines a 2-of-3 multi‐
signature requirement to spend funds. To spend this output, Mohammed’s company
would present the redeem script (whose hash matches the script hash in the P2SH
output) and the signatures necessary to satisfy that redeem script, all inside the
transaction input:

[...]
"vin" : [
  "txid": "abcdef12345...",
  "vout": 0,
  "scriptSig": “<SigA> <SigB> <2 PubA PubB PubC PubD PubE 5 OP_CHECKMULTISIG>”,
]

Now, let’s look at how this entire example would be upgraded to segwit v0. If Moham‐
med’s customers were using a segwit-compatible wallet, they would make a payment,
creating a P2WSH output that would look like this:

0 a9b7b38d972cabc7961dbfbcb841ad4508d133c47ba87457b4a0e8aae86dbb89
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Again, as with the example of P2WPKH, you can see that the segregated witness
equivalent script is a lot simpler and reduces the template overhead that you see
in P2SH scripts. Instead, the segregated witness output script consists of two values
pushed to the stack: a witness version (0) and the 32-byte SHA256 hash of the witness
script (the witness program).

While P2SH uses the 20-byte RIPEMD160(SHA256(script)) hash,
the P2WSH witness program uses a 32-byte SHA256(script) hash.
This difference in the selection of the hashing algorithm is deliber‐
ate to provide stronger security to P2WSH in certain use cases (128
bits of security in P2WSH versus 80 bits of security in P2SH). For
details, see “P2SH Collision Attacks” on page 73.

Mohammed’s company can spend the P2WSH output by presenting the correct wit‐
ness script and sufficient signatures to satisfy it. The witness script and the signatures
would be included as part of the witness structure. No data would be placed in the
input script because this is a native witness program, which does not use the legacy
input script field:

[...]
"vin" : [
  "txid": "abcdef12345...",
  "vout": 0,
  "scriptSig": “”,
]
[...]
“witness”: “<SigA> <SigB> <2 PubA PubB PubC PubD PubE 5 OP_CHECKMULTISIG>”
[...]

Differentiating between P2WPKH and P2WSH
In the previous two sections, we demonstrated two types of witness programs: “Pay
to witness public key hash (P2WPKH)” on page 167 and “Pay to witness script hash
(P2WSH)” on page 168. Both types of witness programs consist of the same version
number followed by a data push. They look very similar, but are interpreted very
differently: one is interpreted as a public key hash, which is satisfied by a signature
and the other as a script hash, which is satisfied by a witness script. The critical
difference between them is the length of the witness program:

• The witness program in P2WPKH is 20 bytes.•
• The witness program in P2WSH is 32 bytes.•

This is the one difference that allows a full node to differentiate between the two types
of witness programs. By looking at the length of the hash, a node can determine what
type of witness program it is, P2WPKH or P2WSH.
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Upgrading to Segregated Witness
As we can see from the previous examples, upgrading to segregated witness is a
two-step process. First, wallets must create segwit type outputs. Then, these outputs
can be spent by wallets that know how to construct segregated witness transactions.
In the examples, Alice’s wallet is able to create outputs paying segregated witness
output scripts. Bob’s wallet is also segwit-aware and able to spend those outputs.

Segregated witness was implemented as a backward-compatible upgrade, where old
and new clients can coexist. Wallet developers independently upgraded wallet soft‐
ware to add segwit capabilities. Legacy P2PKH and P2SH continue to work for
nonupgraded wallets. That leaves two important scenarios, which are addressed in
the next section:

• Ability of a spender’s wallet that is not segwit-aware to make a payment to a•
recipient’s wallet that can process segwit transactions.

• Ability of a spender’s wallet that is segwit-aware to recognize and distinguish•
between recipients that are segwit-aware and ones that are not, by their addresses.

Embedding segregated witness inside P2SH
Let’s assume, for example, that Alice’s wallet is not upgraded to segwit, but Bob’s
wallet is upgraded and can handle segwit transactions. Alice and Bob can use legacy
non-segwit outputs. But Bob would likely want to use segwit to reduce transaction
fees, taking advantage of the reduced cost of witness structure.

In this case, Bob’s wallet can construct a P2SH address that contains a segwit script
inside it. Alice’s wallet can make payments to it without any knowledge of segwit.
Bob’s wallet can then spend this payment with a segwit transaction, taking advantage
of segwit and reducing transaction fees.

Both forms of witness scripts, P2WPKH and P2WSH, can be embedded in a P2SH
address. The first is noted as nested P2WPKH, and the second is noted as nested
P2WSH.

Nested pay to witness public key hash
The first form of output script we will examine is nested P2WPKH. This is a pay to
witness public key hash witness program, embedded inside a pay to script hash script,
so that a wallet that is not aware of segwit can pay the output script.

Bob’s wallet constructs a P2WPKH witness program with Bob’s public key. This
witness program is then hashed and the resulting hash is encoded as a P2SH script.
The P2SH script is converted to a Bitcoin address, one that starts with a “3,” as we saw
in “Pay to Script Hash” on page 153.
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Bob’s wallet starts with the P2WPKH witness version and witness program we saw
earlier:

0 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

The data consists of the witness version and Bob’s 20-byte public key hash.

Bob’s wallet then hashes the data, first with SHA256, then with RIPEMD-160,
producing another 20-byte hash. Next, the redeem script hash is converted to
a Bitcoin address. Finally, Alice’s wallet can make a payment to 37Lx99uaGn5avKB
xiW26HjedQE3LrDCZru, just as it would to any other Bitcoin address.

To pay Bob, Alice’s wallet would lock the output with a P2SH script:

OP_HASH160 3e0547268b3b19288b3adef9719ec8659f4b2b0b OP_EQUAL

Even though Alice’s wallet has no support for segwit, the payment it creates can be
spent by Bob with a segwit transaction.

Nested pay to witness script hash
Similarly, a P2WSH witness program for a multisig script or other complicated script
can be embedded inside a P2SH script and address, making it possible for any wallet
to make payments that are segwit compatible.

As we saw in “Pay to witness script hash (P2WSH)” on page 168, Mohammed’s
company is using segregated witness payments to multisignature scripts. To make it
possible for any client to pay his company, regardless of whether their wallets are
upgraded for segwit, Mohammed’s wallet can embed the P2WSH witness program
inside a P2SH script.

First, Mohammed’s wallet hashes the witness script with SHA256 (just once), produc‐
ing the hash:

9592d601848d04b172905e0ddb0adde59f1590f1e553ffc81ddc4b0ed927dd73

Next, the hashed witness script is turned into a version-prefixed P2WSH witness
program:

0 9592d601848d04b172905e0ddb0adde59f1590f1e553ffc81ddc4b0ed927dd73

Then, the witness program itself is hashed with SHA256 and RIPEMD-160, produc‐
ing a new 20-byte hash:

86762607e8fe87c0c37740cddee880988b9455b2

Next, the wallet constructs a P2SH Bitcoin address from this hash:

3Dwz1MXhM6EfFoJChHCxh1jWHb8GQqRenG
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Now, Mohammed’s clients can make payments to this address even if they don’t
support segwit. To send a payment to Mohammed, a wallet would lock the output
with the following P2SH script:

OP_HASH160 86762607e8fe87c0c37740cddee880988b9455b2 OP_EQUAL

Mohammed’s company can then construct segwit transactions to spend these pay‐
ments, taking advantage of segwit features including lower transaction fees.

Merklized Alternative Script Trees (MAST)
Using OP_IF, you can authorize multiple different spending conditions, but this
approach has several undesirable aspects:

Weight (cost)
Every condition you add increases the size of the script, increasing the weight of
the transaction and the amount of fee that will need to be paid in order to spend
bitcoins protected by that script.

Limited size
Even if you’re willing to pay for extra conditions, there’s a limit to the maximum
number you can put in a script. For example, legacy script is limited to 10,000
bytes, practically limiting you to a few hundred conditional branches at most.
Even if you could create a script as large as an entire block, it could still only
contain about 20,000 useful branches. That’s a lot for simple payments but tiny
compared to some imagined uses of Bitcoin.

Lack of privacy
Every condition you add to your script becomes public knowledge when you
spend bitcoins protected by that script. For example, Mohammed’s lawyer and
business partners will be able to see the entire script in Example 7-1 whenever
anyone spends from it. That means their lawyer, even if he’s not needed for
signing, will be able to track all of their transactions.

However, Bitcoin already uses a data structure known as a merkle tree that allows
verifying an element is a member of a set without needing to identify every other
member of the set.

We’ll learn more about merkle trees in “Merkle Trees” on page 252, but the essential
information is that members of the set of data we want (e.g., authorization conditions
of any length) can be passed into a hash function to create a short commitment
(called a leaf of the merkle tree). Each of those leaves is then paired with another leaf
and hashed again, creating a commitment to the leaves, called a branch commitment.
A commitment to a pair of branches can be created the same way. This step is
repeated for the branches until only one identifier remains, called the merkle root.
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Using our example script from Example 7-1, we construct a merkle tree for each of
the three authorization conditions in Figure 7-5.

Figure 7-5. A MAST with three subscripts.

We can now create a compact membership proof that proves a particular authoriza‐
tion condition is a member of the merkle tree without disclosing any details about the
other members of the merkle tree. See Figure 7-6, and note that the shaded nodes can
be computed from other data provided by the user, so they don’t need to be specified
at spend time.

Figure 7-6. A MAST membership proof for one of the subscripts.
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The hash digests used to create the commitments are each 32 bytes, so proving that a
spend of Figure 7-6 is authorized (using a merkle tree and the particular conditions)
and authenticated (using signatures) uses 383 bytes. By comparison, the same spend
without a merkle tree (i.e., providing all possible authorization conditions) uses 412
bytes.

Saving 29 bytes (7%) in this example doesn’t fully capture the potential savings. The
binary-tree nature of a merkle tree means that you only need an additional 32-byte
commitment every time you double the number of members in the set (in this
case, authorization conditions). In this instance, with three conditions, we need to
use three commitments (one of them being the merkle root, which will need to be
included in the authorization data); we could also have four commitments for the
same cost. An extra commitment would give us up to eight conditions. With just 16
commitments—512 bytes of commitments—we could have over 32,000 authorization
conditions, far more than could be effectively used in an entire block of transactions
filled with OP_IF statements. With 128 commitments (4,096 bytes), the number of
conditions we could create in theory far exceeds the number of conditions that all the
computers in the world could create.

It’s commonly the case that not every authorization condition is equally as likely to
be used. In the our example case, we expect Mohammed and his partners to spend
their money frequently; the time delayed conditions only exist in case something goes
wrong. We can restructure our tree with this knowledge as shown in Figure 7-7.

Figure 7-7. A MAST with the most-expected script in the best position.
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Now we only need to provide two commitments for the common case (saving 32
bytes), although we still need three commitments for the less common cases. If you
know (or can guess) the probabilities of using the different authorization conditions,
you can use the Huffman algorithm to place them into a maximally efficient tree; see
BIP341 for details.

Regardless of how the tree is constructed, we can see in the previous examples that
we’re only revealing the actual authorization conditions that get used. The other
conditions remain private. Also remaining private are the number of conditions:
a tree could have a single condition or a trillion conditions—there’s no way for
someone looking only at the onchain data for a single transaction to tell.

Except for increasing the complexity of Bitcoin slightly, there are no significant
downsides of MAST for Bitcoin and there were two solid proposals for it, BIP114 and
BIP116, before an improved approach was discovered, which we’ll see in “Taproot”
on page 178.

MAST Versus MAST
The earliest idea for what we now know as MAST in Bitcoin was merklized abstract
syntax trees. In an abstract syntax tree (AST), every condition in a script creates a new
branch, as show in Figure 7-8.

Figure 7-8. An abstract syntax tree (AST) for a script.

ASTs are widely used by programs that parse and optimize code for other programs,
such as compilers. A merklized AST would commit to every part of a program and
enable the features described in “Merklized Alternative Script Trees (MAST)” on page
172, but it would require revealing at least one 32-byte digest for every separate part
of the program, which would not be very space efficient on the blockchain for most
programs.

What people in most cases call MAST in Bitcoin today is merklized alternative script
trees, a backronym coined by developer Anthony Towns. An alternative script tree is
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a set of scripts, each one of them complete by itself, where only one can be selected—
making them alternatives for each other, as shown in Figure 7-9.

Figure 7-9. An alternative script tree.

Alternative script trees only require revealing one 32-byte digest for each level of
depth between the spender’s chosen script and the root of the tree. For most scripts,
this is a much more efficient use of space in the blockchain.

Pay to Contract (P2C)
As we saw in “Public Child Key Derivation” on page 92, the math of elliptic curve
cryptography (ECC) allows Alice to use a private key to derive a public key that she
gives to Bob. He can add an arbitrary value to that public key to create a derived
public key. If he gives that arbitrary value to Alice, she can add it to her private key to
derive the private key for the derived public key. In short, Bob can create child public
keys for which only Alice can create the corresponding private keys. This is useful
for BIP32-style Hierarchical Deterministic (HD) wallet recovery, but it can also serve
another use.

Let’s imagine Bob wants to buy something from Alice but he also wants to be able
prove later what he paid for in case there’s any dispute. Alice and Bob agree on the
name of the item or service being sold (e.g., “Alice’s podcast episode #123”), and
transform that description into a number by hashing it and interpreting the hash
digest as a number. Bob adds that number to Alice’s public key and pays it. The
process is called key tweaking, and the number is known as a tweak.

Alice can spend the funds by tweaking her private key using the same number
(tweak).

Later, Bob can prove to anyone what he paid Alice by revealing her underlying key
and the description they used. Anyone can verify that the public key, which was
paid, equals the underlying key plus the hash commitment to the description. If Alice
admits that key is hers, then she received the payment. If Alice spent the funds,
this further proves she knew the description at the time she signed the spending
transaction since she could only create a valid signature for the tweaked public key if
she knew the tweak (the description).
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If neither Alice nor Bob decided to publicly reveal the description they use, the
payment between them looks like any other payment. There’s no privacy loss.

Because P2C is private by default, we can’t know how often it is used for its original
purpose—in theory every payment could be using it, although we consider that
unlikely. However, P2C is widely used today in a slightly different form, which we’ll
see in “Taproot” on page 178.

Scriptless Multisignatures and Threshold Signatures
In “Scripted Multisignatures” on page 150, we looked at scripts that require signatures
from multiple keys. However, there’s another way to require cooperation from multi‐
ple keys, which is also confusingly called multisignature. To distinguish between the
two types in this section, we’ll call the version involving OP_CHECKSIG-style opcodes
script multisignatures and the other version scriptless multisignatures.

Scriptless multisignatures involve each participant creating their own secret the same
way they create a private key. We’ll call this secret a partial private key, although we
should note that it’s the same length as a regular full private key. From the partial pri‐
vate key, each participant derives a partial public key using the same algorithm used
for regular public keys we described in “Public Keys” on page 59. Each participant
shares their partial public keys with all the other participants and then combines all of
the keys together to create the scriptless multisignature public key.

This combined public key looks the same as any other Bitcoin public key. A third
party can’t distinguish between a multiparty public key and an ordinary key gener‐
ated by a single user.

To spend bitcoins protected by the scriptless multisignature public key, each partici‐
pant generates a partial signature. The partial signatures are then combined to create
a regular full signature. There are many known methods for creating and combining
the partial signatures; we’ll look at this topic more in Chapter 8. Similar to the
public keys for scriptless multisignatures, the signatures generated by this process
look the same as any other Bitcoin signature. Third parties can’t determine whether
a signature was created by a single person or a million people cooperating with each
other.

Scriptless multisignatures are smaller and more private than scripted multisignatures.
For scripted multisignatures, the number of bytes placed in a transaction increases for
every key and signature involved. For scriptless multisignatures, the size is constant—
a million participants each providing their own partial key and partial signature puts
exactly the same amount of data in a transaction as an individual using a single key
and signature. The story is the same for privacy: because each new key or signature
adds data to a transaction, scripted multisignatures disclose data about how many
keys and signatures are being used—which may make it easy to figure out which
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transactions were created by which group of participants. However, because every
scriptless multisignatures looks like every other scriptless multisignature and every
single-signature, no privacy-reducing data is leaked.

There are two downsides of scriptless multisignatures. The first is that all known secure
algorithms for creating them for Bitcoin require more rounds of interaction or more
careful management of state than scripted multisignatures. This can be challenging in
cases where signatures are being generated by nearly stateless hardware signing devices
and the keys are physically distributed. For example, if you keep a hardware signing
device in a bank safe deposit box, you would need to visit that box once to create a
scripted multisignature but possibly two or three times for a scriptless multisignature.

The other downside is that threshold signing doesn’t reveal who signed. In scripted
threshold signing, Alice, Bob, and Carol agree (for example) that any two of them
signing will be sufficient to spend the funds. If Alice and Bob sign, this requires
putting signatures from each of them on chain, proving to anyone who knows their
keys that they signed and Carol didn’t. In scriptless threshold signing, a signature
from Alice and Bob is indistinguishable from a signature between Alice and Carol or
Bob and Carol. This is beneficial for privacy, but it means that, even if Carol claims
she didn’t sign, she can’t prove that she didn’t, which may be bad for accountability
and auditability.

For many users and use cases, the always reduced size and increased privacy of multi‐
signatures outweighs its occasional challenges for creating and auditing signatures.

Taproot
One reason people choose to use Bitcoin is that it’s possible to create contracts with
highly predictable outcomes. Legal contracts enforced by a court of law depend in
part on decisions by the judges and jurors involved in the case. By contrast, Bitcoin
contracts often require actions by their participants but are otherwise enforced by
thousands of full nodes all running functionally identical code. When given the same
contract and the same input, every full node will always produce the same result.
Any deviation would mean that Bitcoin was broken. Human judges and juries can be
much more flexible than software, but when that flexibility isn’t wanted or needed,
the predictability of Bitcoin contracts is a major asset.

If all of the participants in a contract recognize that its outcome has become com‐
pletely predictable, there’s not actually any need for them to continue using the
contract. They could just do whatever the contract compels them to do and then ter‐
minate the contract. In society, this is how most contracts terminate: if the interested
parties are satisfied, they never take the contract before a judge or jury. In Bitcoin,
it means that any contract that will use a significant amount of block space to settle
should also provide a clause that allows it to instead be settled by mutual satisfaction.
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In MAST and with scriptless multisignatures, a mutual satisfaction clause is easy
to design. We simply make one of the top leaves of the script tree a scriptless multi‐
signature between all interested parties. We already saw a complex contract between
several parties with a simple mutual satisfaction clause in Figure 7-7. We could
make that more optimized by switching from scripted multisignature to scriptless
multisignature.

That’s reasonably efficient and private. If the mutual satisfaction clause is used, we
only need to provide a single merkle branch and all we reveal is that a signature was
involved (it could be from one person or it could be from thousands of different
participants). But developers in 2018 realized that we could do better if we also used
pay to contract.

In our previous description of pay to contract in “Pay to Contract (P2C)” on page
176, we tweaked a public key to commit to the text of an agreement between Alice
and Bob. We can instead commit to the program code of a contract by committing to
the root of a MAST. The public key we tweak is a regular Bitcoin public key, meaning
it could require a signature from a single person or it could require a signature from
multiple people (or it could be created in a special way to make it impossible to
generate a signature for it). That means we can satisfy the contract either with a single
signature from all interested parties or by revealing the MAST branch we want to
use. That commitment tree involving both a public key and a MAST is shown in
Figure 7-10.

Figure 7-10. A taproot with the public key committing to a merkle root.

This makes the mutual satisfaction clause using a multisignature extremely efficient
and very private. It’s even more private than it may appear because any transaction
created by a single user who wants it to be satisfied by a single signature (or a
multisignature generated by multiple different wallets they control) looks identical
onchain to a mutual-satisfaction spend. There’s no onchain difference in this case
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between a spend by a million users involved in an extraordinarily complex contract
or a single user just spending their saved bitcoins.

When spending is possible using just the key, such as for a single signature or
scriptless multisignature, that is called keypath spending. When the tree of scripts is
used, that is called scriptpath spending. For keypath spending, the data that gets put
onchain is the public key (in a witness program) and the signature (on the witness
stack).

For scriptpath spending, the onchain data also includes the public key, which is
placed in a witness program and called the taproot output key in this context. The
witness structure includes the following information:

• A version number.•
• The underlying key—the key that existed before being tweaked by the merkle•

root to produce the taproot output key. This underlying key is called the taproot
internal key.

• The script to execute, called the leaf script.•
• One 32-byte hash for each junction in merkle tree along the path that connects•

the leaf to the merkle root.
• Any data necessary to satisfy the script (such as signatures or hash preimages).•

We’re only aware of one significant described downside of taproot: contracts whose
participants want to use MAST but who don’t want a mutual satisfaction clause
have to include a taproot internal key on the blockchain, adding about 33 bytes
of overhead. Given that almost all contracts are expected to benefit from a mutual
satisfaction clause, or other multisignature clause that uses the top-level public key,
and all users benefit from the increased anonymity set of outputs looking similar
to each other, that rare overhead was not considered important by most users who
participated in taproot’s activation.

Support for taproot was added to Bitcoin in a soft fork that activated in November
2021.

Tapscript
Taproot enables MAST but only with a slightly different version of the Bitcoin Script
language than previously used, the new version being called tapscript. The major
differences include:
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Scripted multisignature changes
The old OP_CHECKMULTISIG and OP_CHECKMULTISIGVERIFY opcodes are removed.
Those opcodes don’t combine well with one of the other changes in the taproot
soft fork, the ability to use schnorr signatures with batch validation (see “Schnorr
Signatures” on page 187). A new OP_CHECKSIGADD opcode is provided instead.
When it successfully verifies a signature, this new opcode increments a counter
by one, making it possible to conveniently count how many signatures passed,
which can be compared against the desired number of successful signatures to
reimplement the same behavior as OP_CHECKMULTISIG.

Changes to all signatures
All signature operations in tapscript use the schnorr signature algorithm as
defined in BIP340. We’ll explore schnorr signatures more in Chapter 8.

Additionally, any signature-checking operation that is not expected to succeed
must be fed the value OP_FALSE (also called OP_0) instead of an actual signature.
Providing anything else to a failed signature-checking operation will cause the
entire script to fail. This also helps support batch validation of schnorr signa‐
tures.

OP_SUCCESSx opcodes
Opcodes in previous versions of Script that were unusable are now redefined
to cause an entire script to succeed if they are used. This allows future soft
forks to redefine them as not succeeding under certain circumstances, which is
a restriction and so is possible to do in a soft fork. (The opposite, to define a
not-succeeding operation as a success can only be done in a hard fork, which is a
much more challenging upgrade path.)

Although we’ve looked at authorization and authentication in depth in this chapter,
we’ve skipped over one very important part of how Bitcoin authenticates spenders: its
signatures. We’ll look at that next in Chapter 8.
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CHAPTER 8

Digital Signatures

Two signature algorithms are currently used in Bitcoin, the schnorr signature algo‐
rithm and the Elliptic Curve Digital Signature Algorithm (ECDSA). These algorithms
are used for digital signatures based on elliptic curve private/public key pairs,
as described in “Elliptic Curve Cryptography Explained” on page 56. They are
used for spending segwit v0 P2WPKH outputs, segwit v1 P2TR keypath spending,
and by the script functions OP_CHECKSIG, OP_CHECKSIGVERIFY, OP_CHECKMULTISIG,
OP_CHECKMULTISIGVERIFY, and OP_CHECKSIGADD. Any time one of those is executed, a
signature must be provided.

A digital signature serves three purposes in Bitcoin. First, the signature proves that
the controller of a private key, who is by implication the owner of the funds, has
authorized the spending of those funds. Secondly, the proof of authorization is unde‐
niable (nonrepudiation). Thirdly, that the authorized transaction cannot be changed
by unauthenticated third parties—that its integrity is intact.

Each transaction input and any signatures it may contain is com‐
pletely independent of any other input or signature. Multiple parties
can collaborate to construct transactions and sign only one input
each. Several protocols use this fact to create multiparty transac‐
tions for privacy.

In this chapter we look at how digital signatures work and how they can present
proof of control of a private key without revealing that private key.
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How Digital Signatures Work
A digital signature consists of two parts. The first part is an algorithm for creating a
signature for a message (the transaction) using a private key (the signing key). The
second part is an algorithm that allows anyone to verify the signature, given also the
message and the corresponding public key.

Creating a Digital Signature
In Bitcoin’s use of digital signature algorithms, the “message” being signed is the
transaction, or more accurately a hash of a specific subset of the data in the transac‐
tion, called the commitment hash (see “Signature Hash Types (SIGHASH)” on page
185). The signing key is the user’s private key. The result is the signature:

Sig = Fsig Fℎasℎ m , x

where:

• x is the signing private key•
• m is the message to sign, the commitment hash (such as parts of a transaction)•
• Fhash is the hashing function•
• Fsig is the signing algorithm•
• Sig is the resulting signature•

You can find more details on the mathematics of schnorr and ECDSA signatures in
“Schnorr Signatures” on page 187 and “ECDSA Signatures” on page 197.

In both schnorr and ECDSA signatures, the function Fsig produces a signature Sig
that is composed of two values. There are differences between the two values in the
different algorithms, which we’ll explore later. After the two values are calculated,
they are serialized into a byte stream. For ECDSA signatures, the encoding uses an
international standard encoding scheme called the Distinguished Encoding Rules, or
DER. For schnorr signatures, a simpler serialization format is used.

Verifying the Signature
The signature verification algorithm takes the message (a hash of parts of the transac‐
tion and related data), the signer’s public key and the signature, and returns TRUE if
the signature is valid for this message and public key.

To verify the signature, one must have the signature, the serialized transaction, some
data about the output being spent, and the public key that corresponds to the private
key used to create the signature. Essentially, verification of a signature means “Only
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the controller of the private key that generated this public key could have produced
this signature on this transaction.”

Signature Hash Types (SIGHASH)
Digital signatures apply to messages, which in the case of Bitcoin, are the transactions
themselves. The signature proves a commitment by the signer to specific transaction
data. In the simplest form, the signature applies to almost the entire transaction,
thereby committing to all the inputs, outputs, and other transaction fields. However,
a signature can commit to only a subset of the data in a transaction, which is useful
for a number of scenarios as we will see in this section.

Bitcoin signatures have a way of indicating which part of a transaction’s data is
included in the hash signed by the private key using a SIGHASH flag. The SIGHASH
flag is a single byte that is appended to the signature. Every signature has either an
explicit or implicit SIGHASH flag, and the flag can be different from input to input. A
transaction with three signed inputs may have three signatures with different SIGHASH
flags, each signature signing (committing) to different parts of the transaction.

Remember, each input may contain one or more signatures. As a result, an input
may have signatures with different SIGHASH flags that commit to different parts of
the transaction. Note also that Bitcoin transactions may contain inputs from different
“owners,” who may sign only one input in a partially constructed transaction, collabo‐
rating with others to gather all the necessary signatures to make a valid transaction.
Many of the SIGHASH flag types only make sense if you think of multiple participants
collaborating outside the Bitcoin network and updating a partially signed transaction.

There are three SIGHASH flags: ALL, NONE, and SINGLE, as shown in Table 8-1.

Table 8-1. SIGHASH types and their meanings

SIGHASH flag Value Description

ALL 0x01 Signature applies to all inputs and outputs

NONE 0x02 Signature applies to all inputs, none of the outputs

SINGLE 0x03 Signature applies to all inputs but only the one output with the same index number as the signed
input

In addition, there is a modifier flag, SIGHASH_ANYONECANPAY, which can be combined
with each of the preceding flags. When ANYONECANPAY is set, only one input is signed,
leaving the rest (and their sequence numbers) open for modification. The ANYONECAN
PAY has the value 0x80 and is applied by bitwise OR, resulting in the combined flags
as shown in Table 8-2.
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Table 8-2. SIGHASH types with modifiers and their meanings

SIGHASH flag Value Description

ALL|ANYONECANPAY 0x81 Signature applies to one input and all outputs

NONE|ANYONECANPAY 0x82 Signature applies to one input, none of the outputs

SINGLE|ANYONECANPAY 0x83 Signature applies to one input and the output with the same index number

The way SIGHASH flags are applied during signing and verification is that a copy of
the transaction is made and certain fields within are either omitted or truncated (set
to zero length and emptied). The resulting transaction is serialized. The SIGHASH
flag is included in the serialized transaction data and the result is hashed. The hash
digest itself is the “message” that is signed. Depending on which SIGHASH flag is used,
different parts of the transaction are included. By including the SIGHASH flag itself, the
signature commits the SIGHASH type as well, so it can’t be changed (e.g., by a miner).

In “Serialization of ECDSA Signatures (DER)” on page 199, we will see that the last
part of the DER-encoded signature was 01, which is the SIGHASH_ALL flag for ECDSA
signatures. This locks the transaction data, so Alice’s signature is committing to the
state of all inputs and outputs. This is the most common signature form.

Let’s look at some of the other SIGHASH types and how they can be used in practice:

ALL|ANYONECANPAY

This construction can be used to make a “crowdfunding”-style transaction.
Someone attempting to raise funds can construct a transaction with a single
output. The single output pays the “goal” amount to the fundraiser. Such a trans‐
action is obviously not valid, as it has no inputs. However, others can now amend
it by adding an input of their own as a donation. They sign their own input with
ALL|ANYONECANPAY. Unless enough inputs are gathered to reach the value of the
output, the transaction is invalid. Each donation is a “pledge,” which cannot be
collected by the fundraiser until the entire goal amount is raised. Unfortunately,
this protocol can be circumvented by the fundraiser adding an input of their own
(or from someone who lends them funds), allowing them to collect the donations
even if they haven’t reached the specified value.

NONE

This construction can be used to create a “bearer check” or “blank check” of a
specific amount. It commits to all inputs but allows the outputs to be changed.
Anyone can write their own Bitcoin address into the output script. By itself,
this allows any miner to change the output destination and claim the funds for
themselves, but if other required signatures in the transaction use SIGHASH_ALL
or another type that commits to the output, it allows those spenders to change
the destination without allowing any third parties (like miners) to modify the
outputs.
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NONE|ANYONECANPAY

This construction can be used to build a “dust collector.” Users who have tiny
UTXOs in their wallets can’t spend these without the cost in fees exceeding the
value of the UTXO; see “Uneconomical outputs and disallowed dust” on page
131. With this type of signature, the uneconomical UTXOs can be donated for
anyone to aggregate and spend whenever they want.

There are some proposals to modify or expand the SIGHASH system. The most widely
discussed proposal as of this writing is BIP118, which proposes to add two new
sighash flags. A signature using SIGHASH_ANYPREVOUT would not commit to an input’s
outpoint field, allowing it to be used to spend any previous output for a particular
witness program. For example, if Alice receives two outputs for the same amount
to the same witness program (e.g., requiring a single signature from her wallet), a
SIGHASH_ANYPREVOUT signature for spending either one of those outputs could be
copied and used to spend the other output to the same destination.

A signature using SIGHASH_ANYPREVOUTANYSCRIPT would not commit to the outpoint,
the amount, the witness program, or the specific leaf in the taproot merkle tree (script
tree), allowing it to spend any previous output that the signature could satisfy. For
example, if Alice received two outputs for different amounts and different witness
programs (e.g., one requiring a single signature and another requiring her signa‐
ture plus some other data), a SIGHASH_ANYPREVOUTANYSCRIPT signature for spending
either one of those outputs could be copied and used to spend the other output to the
same destination (assuming the extra data for the second output was known).

The main expected use for the two SIGHASH_ANYPREVOUT opcodes is improved pay‐
ment channels, such as those used in the Lightning Network (LN), although several
other uses have been described.

You will not often see SIGHASH flags presented as an option in
a user’s wallet application. Simple wallet applications sign with
SIGHASH_ALL flags. More sophisticated applications, such as LN
nodes, may use alternative SIGHASH flags, but they use protocols
that have been extensively reviewed to understand the influence of
the alternative flags.

Schnorr Signatures
In 1989, Claus Schnorr published a paper describing the signature algorithm that’s
become eponymous with him. The algorithm isn’t specific to the elliptic curve cryp‐
tography (ECC) that Bitcoin and many other applications use, although it is perhaps
most strongly associated with ECC today. Schnorr signatures have a number of nice
properties:
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Provable security
A mathematical proof of the security of schnorr signatures depends on only
the difficulty of solving the Discrete Logarithm Problem (DLP), particularly
for elliptic curves (EC) for Bitcoin, and the ability of a hash function (like
the SHA256 function used in Bitcoin) to produce unpredictable values, called
the random oracle model (ROM). Other signature algorithms have additional
dependencies or require much larger public keys or signatures for equivalent
security to ECC-Schnorr (when the threat is defined as classical computers; other
algorithms may provide more efficient security against quantum computers).

Linearity
Schnorr signatures have a property that mathematicians call linearity, which
applies to functions with two particular properties. The first property is that
summing together two or more variables and then running a function on that
sum will produce the same value as running the function on each of the variables
independently and then summing together the results, e.g., f(x + y + z) ==
f(x) + f(y) + f(z); this property is called additivity. The second property is that
multiplying a variable and then running a function on that product will produce
the same value as running the function on the variable and then multiplying it by
the same amount, e.g., f(a × x) == a × f(x); this property is called homogeneity of
degree 1.

In cryptographic operations, some functions may be private (such as functions
involving private keys or secret nonces), so being able to get the same result
whether performing an operation inside or outside of a function makes it easy for
multiple parties to coordinate and cooperate without sharing their secrets. We’ll
see some of the specific benefits of linearity in schnorr signatures in “Schnorr-
based Scriptless Multisignatures” on page 193 and “Schnorr-based Scriptless
Threshold Signatures” on page 195.

Batch verification
When used in a certain way (which Bitcoin does), one consequence of schnorr’s
linearity is that it’s relatively straightforward to verify more than one schnorr
signature at the same time in less time than it would take to verify each signature
independently. The more signatures that are verified in a batch, the greater
the speed up. For the typical number of signatures in a block, it’s possible to
batch verify them in about half the amount of time it would take to verify each
signature independently.

Later in this chapter, we’ll describe the schnorr signature algorithm exactly as it’s used
in Bitcoin, but we’re going to start with a simplified version of it and work our way
toward the actual protocol in stages.
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Alice starts by choosing a large random number (x), which we call her private key.
She also knows a public point on Bitcoin’s elliptic curve called the Generator (G) (see
“Public Keys” on page 59). Alice uses EC multiplication to multiply G by her private
key x, in which case x is called a scalar because it scales up G. The result is xG, which
we call Alice’s public key. Alice gives her public key to Bob. Even though Bob also
knows G, the DLP prevents Bob from being able to divide xG by G to derive Alice’s
private key.

At some later time, Bob wants Alice to identify herself by proving that she knows
the scalar x for the public key (xG) that Bob received earlier. Alice can’t give Bob x
directly because that would allow him to identify as her to other people, so she needs
to prove her knowledge of x without revealing x to Bob, called a zero-knowledge proof.
For that, we begin the schnorr identity process:

1. Alice chooses another large random number (k), which we call the private nonce.1.
Again she uses it as a scalar, multiplying it by G to produce kG, which we call the
public nonce. She gives the public nonce to Bob.

2. Bob chooses a large random number of his own, e, which we call the challenge2.
scalar. We say “challenge” because it’s used to challenge Alice to prove that she
knows the private key (x) for the public key (xG) she previously gave Bob; we say
“scalar” because it will later be used to multiply an EC point.

3. Alice now has the numbers (scalars) x, k, and e. She combines them together to3.
produce a final scalar s using the formula s = k + ex. She gives s to Bob.

4. Bob now knows the scalars s and e, but not x or k. However, Bob does know4.
xG and kG, and he can compute for himself sG and exG. That means he can
check the equality of a scaled-up version of the operation Alice performed:
sG == kG + exG. If that is equal, then Bob can be sure that Alice knew x when she
generated s.

Schnorr Identity Protocol with Integers Instead of Points
It might be easier to understand the interactive schnorr identity protocol if we create
an insecure oversimplification by substituting each of the preceding values (including
G) with simple integers instead of points on an elliptic curve. For example, we’ll use
the prime numbers starting with 3:

Setup: Alice chooses x = 3 as her private key. She multiplies it by the generator G = 5
to get her public key xG = 15. She gives Bob 15.

1. Alice chooses the private nonce k = 7 and generates the public nonce kG = 35.1.
She gives Bob 35.

2. Bob chooses e = 11 and gives it to Alice.2.
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3. Alice generates s = 40 = 7 + 11 × 3. She gives Bob 40.3.
4. Bob derives sG = 200 = 40 × 5 and exG = 165 = 11 × 15. He then verifies that4.

200 == 35 + 165. Note that this is the same operation that Alice performed, but
all of the values have been scaled up by 5 (the value of G).

Of course, this is an oversimplified example. When working with simple integers, we
can divide products by the generator G to get the underlying scalar, which isn’t secure.
This is why a critical property of the elliptic curve cryptography used in Bitcoin is that
multiplication is easy but division by a point on the curve is impractical. Also, with
numbers this small, finding underlying values (or valid substitutes) through brute
force is easy; the numbers used in Bitcoin are much larger.

Let’s discuss some of the features of the interactive schnorr identity protocol that
make it secure:

The nonce (k)
In step 1, Alice chooses a number that Bob doesn’t know and can’t guess and
gives him the scaled form of that number, kG. At that point, Bob also already
has her public key (xG), which is the scaled form of x, her private key. That
means when Bob is working on the final equation (sG = kG + exG), there are two
independent variables that Bob doesn’t know (x and k). It’s possible to use simple
algebra to solve an equation with one unknown variable but not two independent
unknown variables, so the presence of Alice’s nonce prevents Bob from being
able to derive her private key. It’s critical to note that this protection depends on
nonces being unguessable in any way. If there’s anything predictable about Alice’s
nonce, Bob may be able to leverage that into figuring out Alice’s private key. See
“The Importance of Randomness in Signatures” on page 200 for more details.

The challenge scalar (e)
Bob waits to receive Alice’s public nonce and then proceeds in step 2 to give her a
number (the challenge scalar) that Alice didn’t previously know and couldn’t have
guessed. It’s critical that Bob only give her the challenge scalar after she commits
to her public nonce. Consider what could happen if someone who didn’t know
x wanted to impersonate Alice, and Bob accidentally gave them the challenge
scalar e before they told him the public nonce kG. This allows the impersonator
to change parameters on both sides of the equation that Bob will use for verifica‐
tion, sG == kG + exG; specifically, they can change both sG and kG. Think about
a simplified form of that expression: x = y + a. If you can change both x and y,
you can cancel out a using x' = (x – a) + a. Any value you choose for x will now
satisfy the equation. For the actual equation the impersonator simply chooses a
random number for s, generates sG, and then uses EC subtraction to select a kG
that equals kG = sG – exG. They give Bob their calculated kG and later their
random sG, and Bob thinks that’s valid because sG == (sG – exG) + exG. This
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explains why the order of operations in the protocol is essential: Bob must only
give Alice the challenge scalar after Alice has committed to her public nonce.

The interactive identity protocol described here matches part of Claus Schnorr’s origi‐
nal description, but it lacks two essential features we need for the decentralized Bitcoin
network. The first of these is that it relies on Bob waiting for Alice to commit to
her public nonce and then Bob giving her a random challenge scalar. In Bitcoin, the
spender of every transaction needs to be authenticated by thousands of Bitcoin full
nodes—including future nodes that haven’t been started yet but whose operators will
one day want to ensure the bitcoins they receive came from a chain of transfers where
every transaction was valid. Any Bitcoin node that is unable to communicate with
Alice, today or in the future, will be unable to authenticate her transaction and will be
in disagreement with every other node that did authenticate it. That’s not acceptable for
a consensus system like Bitcoin. For Bitcoin to work, we need a protocol that doesn’t
require interaction between Alice and each node that wants to authenticate her.

A simple technique, known as the Fiat-Shamir transform after its discoverers, can
turn the schnorr interactive identity protocol into a noninteractive digital signature
scheme. Recall the importance of steps 1 and 2—including that they be performed
in order. Alice must commit to an unpredictable nonce; Bob must give Alice an
unpredictable challenge scalar only after he has received her commitment. Recall also
the properties of secure cryptographic hash functions we’ve used elsewhere in this
book: it will always produce the same output when given the same input but it will
produce a value indistinguishable from random data when given a different input.

This allows Alice to choose her private nonce, derive her public nonce, and then hash
the public nonce to get the challenge scalar. Because Alice can’t predict the output
of the hash function (the challenge), and because it’s always the same for the same
input (the nonce), this ensures that Alice gets a random challenge even though she
chooses the nonce and hashes it herself. We no longer need interaction from Bob. She
can simply publish her public nonce kG and the scalar s, and each of the thousands
of full nodes (past and future) can hash kG to produce e, use that to produce exG,
and then verify sG == kG + exG. Written explicitly, the verification equation becomes
sG == kG + hash(kG) × xG.

We need one other thing to finish converting the interactive schnorr identity protocol
into a digital signature protocol useful for Bitcoin. We don’t just want Alice to prove
that she knows her private key; we also want to give her the ability to commit to
a message. Specifically, we want her to commit to the data related to the Bitcoin
transaction she wants to send. With the Fiat-Shamir transform in place, we already
have a commitment, so we can simply have it additionally commit to the message.
Instead of hash(kG), we now also commit to the message m using hash(kG || m),
where || stands for concatenation.
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We’ve now defined a version of the schnorr signature protocol, but there’s one more
thing we need to do to address a Bitcoin-specific concern. In BIP32 key derivation, as
described in “Public Child Key Derivation” on page 92, the algorithm for unhardened
derivation takes a public key and adds to it a nonsecret value to produce a derived
public key. That means it’s also possible to add that nonsecret value to a valid
signature for one key to produce a signature for a related key. That related signature
is valid but it wasn’t authorized by the person possessing the private key, which is a
major security failure. To protect BIP32 unhardened derivation and also support sev‐
eral protocols people wanted to build on top of schnorr signatures, Bitcoin’s version
of schnorr signatures, called BIP340 schnorr signatures for secp256k1, also commits
to the public key being used in addition to the public nonce and the message. That
makes the full commitment hash(kG || xG || m).

Now that we’ve described each part of the BIP340 schnorr signature algorithm and
explained what it does for us, we can define the protocol. Multiplication of integers
are performed modulus p, indicating that the result of the operation is divided by
the number p (as defined in the secp256k1 standard) and the remainder is used. The
number p is very large, but if it was 3 and the result of an operation was 5, the actual
number we would use is 2 (i.e., 5 divided by 3 has a remainder of 2).

Setup: Alice chooses a large random number (x) as her private key (either directly
or by using a protocol like BIP32 to deterministically generate a private key from a
large random seed value). She uses the parameters defined in secp256k1 (see “Elliptic
Curve Cryptography Explained” on page 56) to multiply the generator G by her scalar
x, producing xG (her public key). She gives her public key to everyone who will later
authenticate her Bitcoin transactions (e.g., by having xG included in a transaction
output). When she’s ready to spend, she begins generating her signature:

1. Alice chooses a large random private nonce k and derives the public nonce kG.1.
2. She chooses her message m (e.g., transaction data) and generates the challenge2.

scalar e = hash(kG || xG || m).
3. She produces the scalar s = k + ex. The two values kG and s are her signature.3.

She gives this signature to everyone who wants to verify that signature; she also
needs to ensure everyone receives her message m. In Bitcoin, this is done by
including her signature in the witness structure of her spending transaction and
then relaying that transaction to full nodes.

4. The verifiers (e.g., full nodes) use s to derive sG and then verify that sG == kG +4.
hash(kG || xG || m) × xG. If the equation is valid, Alice proved that she knows her
private key x (without revealing it) and committed to the message m (containing
the transaction data).
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Serialization of Schnorr Signatures
A schnorr signature consists of two values, kG and s. The value kG is a point on
Bitcoin’s elliptic curve (called secp256k1) and would normally be represented by two
32-byte coordinates, e.g., (x, y). However, only the x coordinate is needed, so only that
value is included. When you see kG in schnorr signatures for Bitcoin, note that it’s
only that point’s x coordinate.

The value s is a scalar (a number meant to multiply other numbers). For Bitcoin’s
secp256k1 curve, it can never be more than 32 bytes long.

Although both kG and s can sometimes be values that can be represented with fewer
than 32 bytes, it’s improbable that they’d be much smaller than 32 bytes, so they’re
serialized as two 32-byte values (i.e., values smaller than 32 bytes have leading zeros).
They’re serialized in the order of kG and then s, producing exactly 64 bytes.

The taproot soft fork, also called v1 segwit, introduced schnorr signatures to Bitcoin
and is the only way they are used in Bitcoin as of this writing. When used with either
taproot keypath or scriptpath spending, a 64-byte schnorr signature is considered to
use a default signature hash (sighash) that is SIGHASH_ALL. If an alternative sighash is
used, or if the spender wants to waste space to explicitly specify SIGHASH_ALL, a single
additional byte is appended to the signature that specifies the signature hash, making
the signature 65 bytes.

As we’ll see, either 64 or 65 bytes is considerably more efficient that the serialization
used for ECDSA signatures described in “Serialization of ECDSA Signatures (DER)”
on page 199.

Schnorr-based Scriptless Multisignatures
In the single-signature schnorr protocol described in “Schnorr Signatures” on page
187, Alice uses a signature (kG, s) to publicly prove her knowledge of her private key,
which in this case we’ll call y. Imagine if Bob also has a private key (z) and he’s willing
to work with Alice to prove that together they know x = y + z without either of them
revealing their private key to each other or anyone else. Let’s go through the BIP340
schnorr signature protocol again.

The simple protocol we are about to describe is not secure for
the reasons we will explain shortly. We use it only to demonstrate
the mechanics of schnorr multisignatures before describing related
protocols that are believed to be secure.

Alice and Bob need to derive the public key for x, which is xG. Since it’s possible to
use elliptic curve operations to add two EC points together, they start by Alice deriv‐
ing yG and Bob deriving zG. They then add them together to create xG = yG + zG.

Schnorr Signatures | 193



The point xG is their aggregated public key. To create a signature, they begin the
simple multisignature protocol:

1. They each individually choose a large random private nonce, a for Alice and b for1.
Bob. They also individually derive the corresponding public nonce aG and bG.
Together, they produce an aggregated public nonce kG = aG + bG.

2. They agree on the message to sign, m (e.g., a transaction), and each generates a2.
copy of the challenge scalar: e = hash(kG || xG || m).

3. Alice produces the scalar q = a + ey. Bob produces the scalar r = b + ez. They3.
add the scalars together to produce s = q + r. Their signature is the two values kG
and s.

4. The verifiers check their public key and signature using the normal equation:4.
sG == kG + hash(kG || xG || m) × xG.

Alice and Bob have proven that they know the sum of their private keys without
either one of them revealing their private key to the other or anyone else. The
protocol can be extended to any number of participants (e.g., a million people could
prove they knew the sum of their million different keys).

The preceding protocol has several security problems. Most notable is that one party
might learn the public keys of the other parties before committing to their own public
key. For example, Alice generates her public key yG honestly and shares it with Bob.
Bob generates his public key using zG – yG. When their two keys are combined
(yG + zG – yG), the positive and negative yG terms cancel out so the public key only
represents the private key for z (i.e., Bob’s private key). Now Bob can create a valid
signature without any assistance from Alice. This is called a key cancellation attack.

There are various ways to solve the key cancellation attack. The simplest scheme
would be to require each participant commit to their part of the public key before
sharing anything about that key with all of the other participants. For example,
Alice and Bob each individually hash their public keys and share their digests with
each other. When they both have the other’s digest, they can share their keys. They
individually check that the other’s key hashes to the previously provided digest and
then proceed with the protocol normally. This prevents either one of them from
choosing a public key that cancels out the keys of the other participants. However,
it’s easy to fail to implement this scheme correctly, such as using it in a naive way
with unhardened BIP32 public key derivation. Additionally, it adds an extra step for
communication between the participants, which may be undesirable in many cases.
More complex schemes have been proposed that address these shortcomings.

In addition to the key cancellation attack, there are a number of attacks possible
against nonces. Recall that the purpose of the nonce is to prevent anyone from being
able to use their knowledge of other values in the signature verification equation to
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solve for your private key, determining its value. To effectively accomplish that, you
must use a different nonce every time you sign a different message or change other
signature parameters. The different nonces must not be related in any way. For a
multisignature, every participant must follow these rules or it could compromise the
security of other participants. In addition, cancellation and other attacks need to be
prevented. Different protocols that accomplish these aims make different trade-offs,
so there’s no single multisignature protocol to recommend in all cases. Instead, we’ll
note three from the MuSig family of protocols:

MuSig
Also called MuSig1, this protocol requires three rounds of communication dur‐
ing the signing process, making it similar to the process we just described.
MuSig1’s greatest advantage is its simplicity.

MuSig2
This only requires two rounds of communication and can sometimes allow
one of the rounds to be combined with key exchange. This can significantly
speed up signing for certain protocols, such as how scriptless multisignatures are
planned to be used in the LN. MuSig2 is specified in BIP327 (the only scriptless
multisignature protocol that has a BIP as of this writing).

MuSig-DN
DN stands for Deterministic Nonce, which eliminates as a concern a problem
known as the repeated session attack. It can’t be combined with key exchange and
it’s significantly more complex to implement than MuSig or MuSig2.

For most applications, MuSig2 is the best multisignature protocol available at the
time of writing.

Schnorr-based Scriptless Threshold Signatures
Scriptless multisignature protocols only work for k-of-k signing. Everyone with a
partial public key that becomes part of the aggregated public key must contribute
a partial signature and partial nonce to the final signature. Sometimes, though, the
participants want to allow a subset of them to sign, such as t-of-k where a threshold
(t) number of participants can sign for a key constructed by k participants. That type
of signature is called a threshold signature.

We saw script-based threshold signatures in “Scripted Multisignatures” on page 150.
But just as scriptless multisignatures save space and increase privacy compared to
scripted multisignatures, scriptless threshold signatures save space and increase privacy
compared to scripted threshold signatures. To anyone not involved in the signing, a
scriptless threshold signature looks like any other signature that could’ve been created
by a single-sig user or through a scriptless multisignature protocol.
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Various methods are known for generating scriptless threshold signatures, with the
simplest being a slight modification of how we created scriptless multisignatures pre‐
viously. This protocol also depends on verifiable secret sharing (which itself depends
on secure secret sharing).

Basic secret sharing can work through simple splitting. Alice has a secret number that
she splits into three equal-length parts and shares with Bob, Carol, and Dan. Those
three can combine the partial numbers they received (called shares) in the correct
order to reconstruct Alice’s secret. A more sophisticated scheme would involve Alice
adding on some additional information to each share, called a correction code, that
allows any two of them to recover the number. This scheme is not secure because
each share gives its holder partial knowledge of Alice’s secret, making it easier for the
participant to guess Alice’s secret than a nonparticipant who didn’t have a share.

A secure secret sharing scheme prevents participants from learning anything about
the secret unless they combine the minimum threshold number of shares. For exam‐
ple, Alice can choose a threshold of 2 if she wants any two of Bob, Carol, and Dan
to be able to reconstruct her secret. The best known secure secret sharing algorithm
is Shamir’s Secret Sharing Scheme, commonly abbreviated SSSS and named after its
discoverer, one of the same discoverers of the Fiat-Shamir transform we saw in
“Schnorr Signatures” on page 187.

In some cryptographic protocols, such as the scriptless threshold signature schemes
we’re working toward, it’s critical for Bob, Carol, and Dan to know that Alice followed
her side of the protocol correctly. They need to know that the shares she creates all
derive from the same secret, that she used the threshold value she claims, and that she
gave each one of them a different share. A protocol that can accomplish all of that,
and still be a secure secret sharing scheme, is a verifiable secret sharing scheme.

To see how multisignatures and verifiable secret sharing work for Alice, Bob, and
Carol, imagine they each wish to receive funds that can be spent by any two of them.
They collaborate as described in “Schnorr-based Scriptless Multisignatures” on page
193 to produce a regular multisignature public key to accept the funds (k-of-k). Then
each participant derives two secret shares from their private key—one for each of
two the other participants. The shares allow any two of them to reconstruct the origi‐
nating partial private key for the multisignature. Each participant distributes one of
their secret shares to the other two participants, resulting in each participant storing
their own partial private key and one share for every other participant. Subsequently,
each participant verifies the authenticity and uniqueness of the shares they received
compared to the shares given to the other participants.

Later on, when (for example) Alice and Bob want to generate a scriptless threshold
signature without Carol’s involvement, they exchange the two shares they possess for
Carol. This enables them to reconstruct Carol’s partial private key. Alice and Bob also

196 | Chapter 8: Digital Signatures



have their private keys, allowing them to create a scriptless multisignature with all
three necessary keys.

In other words, the scriptless threshold signature scheme just described is the same
as a scriptless multisignature scheme except that a threshold number of participants
have the ability to reconstruct the partial private keys of any other participants who
are unable or unwilling to sign.

This does point to a few things to be aware about when considering a scriptless
threshold signature protocol:

No accountability
Because Alice and Bob reconstruct Carol’s partial private key, there can be no
fundamental difference between a scriptless multisignature produced by a pro‐
cess that involved Carol and one that didn’t. Even if Alice, Bob, or Carol claim
that they didn’t sign, there’s no guaranteed way for them to prove that they didn’t
help produce the signature. If it’s important to know which members of the
group signed, you will need to use a script.

Manipulation attacks
Imagine that Bob tells Alice that Carol is unavailable, so they work together to
reconstruct Carol’s partial private key. Then Bob tells Carol that Alice is unavail‐
able, so they work together to reconstruct Alice’s partial private key. Now Bob
has his own partial private key plus the keys of Alice and Carol, allowing him to
spend the funds himself without their involvement. This attack can be addressed
if all of the participants agree to only communicate using a scheme that allows
any one of them to see all of the other’s messages (e.g., if Bob tells Alice that
Carol is unavailable, Carol is able to see that message before she begins working
with Bob). Other solutions, possibly more robust solutions, to this problem were
being researched at the time of writing.

No scriptless threshold signature protocol has been proposed as a BIP yet, although
significant research into the subject has been performed by multiple Bitcoin contribu‐
tors and we expect peer-reviewed solutions will become available after the publication
of this book.

ECDSA Signatures
Unfortunately for the future development of Bitcoin and many other applications,
Claus Schnorr patented the algorithm he discovered and prevented its use in open
standards and open source software for almost two decades. Cryptographers in the
early 1990s who were blocked from using the schnorr signature scheme developed an
alternative construction called the Digital Signature Algorithm (DSA), with a version
adapted to elliptic curves called ECDSA.
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The ECDSA scheme and standardized parameters for suggested curves it could be
used with were widely implemented in cryptographic libraries by the time develop‐
ment on Bitcoin began in 2007. This was almost certainly the reason why ECDSA was
the only digital signature protocol that Bitcoin supported from its first release version
until the activation of the taproot soft fork in 2021. ECDSA remains supported
today for all non-taproot transactions. Some of the differences compared to schnorr
signatures include:

More complex
As we’ll see, ECDSA requires more operations to create or verify a signature
than the schnorr signature protocol. It’s not significantly more complex from an
implementation standpoint, but that extra complexity makes ECDSA less flexible,
less performant, and harder to prove secure.

Less provable security
The interactive schnorr signature identification protocol depends only on the
strength of the elliptic curve Discrete Logarithm Problem (ECDLP). The non-
interactive authentication protocol used in Bitcoin also relies on the random
oracle model (ROM). However, ECDSA’s extra complexity has prevented a com‐
plete proof of its security being published (to the best of our knowledge). We are
not experts in proving cryptographic algorithms, but it seems unlikely after 30
years that ECDSA will be proven to only require the same two assumptions as
schnorr.

Nonlinear
ECDSA signatures cannot be easily combined to create scriptless multisignatures
or used in related advanced applications, such as multiparty signature adaptors.
There are workarounds for this problem, but they involve additional extra com‐
plexity that significantly slows down operations and which, in some cases, has
resulted in software accidentally leaking private keys.

ECDSA Algorithm
Let’s look at the math of ECDSA. Signatures are created by a mathematical function
Fsig that produces a signature composed of two values. In ECDSA, those two values
are R and s.

The signature algorithm first generates a private nonce (k) and derives from it a
public nonce (K). The R value of the digital signature is then the x coordinate of the
nonce K.

From there, the algorithm calculates the s value of the signature. Like we did with
schnorr signatures, operations involving integers are modulus p:

s = k−1
Hasℎ m + x × R
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where:

• k is the private nonce•
• R is the x coordinate of the public nonce•
• x is the Alice’s private key•
• m is the message (transaction data)•

Verification is the inverse of the signature generation function, using the R, s values
and the public key to calculate a value K, which is a point on the elliptic curve (the
public nonce used in signature creation):

K = s−1 × Hasℎ m × G + s−1 × R × X

where:

• R and s are the signature values•
• X is Alice’s public key•
• m is the message (the transaction data that was signed)•
• G is the elliptic curve generator point•

If the x coordinate of the calculated point K is equal to R, then the verifier can
conclude that the signature is valid.

ECDSA is necessarily a fairly complicated piece of math; a full
explanation is beyond the scope of this book. A number of great
guides online take you through it step by step: search for “ECDSA
explained.”

Serialization of ECDSA Signatures (DER)
Let’s look at the following DER-encoded signature:

3045022100884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb02204
b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e381301

That signature is a serialized byte stream of the R and s values produced by the signer
to prove control of the private key authorized to spend an output. The serialization
format consists of nine elements as follows:

• 0x30, indicating the start of a DER sequence•
• 0x45, the length of the sequence (69 bytes)•
• 0x02, an integer value follows•
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• 0x21, the length of the integer (33 bytes)•
• R, 00884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb•
• 0x02, another integer follows•
• 0x20, the length of the integer (32 bytes)•
• S, 4b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813•
• A suffix (0x01) indicating the type of hash used (SIGHASH_ALL)•

The Importance of Randomness in Signatures
As we saw in “Schnorr Signatures” on page 187 and “ECDSA Signatures” on page
197, the signature generation algorithm uses a random number k as the basis for a
private/public nonce pair. The value of k is not important, as long as it is random. If
signatures from the same private key use the private nonce k with different messages
(transactions), then the signing private key can be calculated by anyone. Reuse of the
same value for k in a signature algorithm leads to exposure of the private key!

If the same value k is used in the signing algorithm on two different
transactions, the private key can be calculated and exposed to the
world!

This is not just a theoretical possibility. We have seen this issue lead to exposure
of private keys in a few different implementations of transaction-signing algorithms
in Bitcoin. People have had funds stolen because of inadvertent reuse of a k value.
The most common reason for reuse of a k value is an improperly initialized random-
number generator.

To avoid this vulnerability, the industry best practice is to not generate k with a
random-number generator seeded only with entropy, but instead to use a process
seeded in part with the transaction data itself plus the private key being used to
sign. This ensures that each transaction produces a different k. The industry-standard
algorithm for deterministic initialization of k for ECDSA is defined in RFC6979,
published by the Internet Engineering Task Force. For schnorr signatures, BIP340
recommends a default signing algorithm.

BIP340 and RFC6979 can generate k entirely deterministically, meaning the same
transaction data will always produce the same k. Many wallets do this because it
makes it easy to write tests to verify their safety-critical signing code is producing
k values correctly. BIP340 and RFC6979 both also allow including additional data
in the calculation. If that data is entropy, then a different k will be produced even
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if the exact same transaction data is signed. This can increase protection against
sidechannel and fault-injection attacks.

If you are implementing an algorithm to sign transactions in Bitcoin, you must use
BIP340, RFC6979, or a similar algorithm to ensure you generate a different k for each
transaction.

Segregated Witness’s New Signing Algorithm
Signatures in Bitcoin transactions are applied on a commitment hash, which is cal‐
culated from the transaction data, locking specific parts of the data indicating the
signer’s commitment to those values. For example, in a simple SIGHASH_ALL type
signature, the commitment hash includes all inputs and outputs.

Unfortunately, the way the legacy commitment hashes were calculated introduced the
possibility that a node verifying a signature can be forced to perform a significant
number of hash computations. Specifically, the hash operations increase roughly
quadratically with respect to the number of inputs in the transaction. An attacker
could therefore create a transaction with a very large number of signature operations,
causing the entire Bitcoin network to have to perform hundreds or thousands of hash
operations to verify the transaction.

Segwit represented an opportunity to address this problem by changing the way the
commitment hash is calculated. For segwit version 0 witness programs, signature
verification occurs using an improved commitment hash algorithm as specified in
BIP143.

The new algorithm allows the number of hash operations to increase by a much more
gradual O(n) to the number of signature operations, reducing the opportunity to
create denial-of-service attacks with overly complex transactions.

In this chapter, we learned about schnorr and ECDSA signatures for Bitcoin. This
explains how full nodes authenticate transactions to ensure that only someone con‐
trolling the key to which bitcoins were received can spend those bitcoins. We also
examined several advanced applications of signatures, such as scriptless multisigna‐
tures and scriptless threshold signatures that can be used to improve the efficiency
and privacy of Bitcoin. In the past few chapters, we’ve learned how to create transac‐
tions, how to secure them with authorization and authentication, and how to sign
them. We will next learn how to encourage miners to confirm them by adding fees to
the transactions we create.
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CHAPTER 9

Transaction Fees

The digital signature we saw Alice create in Chapter 8 only proves that she knows
her private key and that she committed to a transaction that pays Bob. She can create
another signature that instead commits to a transaction paying Carol—a transaction
that spends the same output (bitcoins) that she used to pay Bob. Those two transactions
are now conflicting transactions because only one transaction spending a particular
output can be included in the valid blockchain with the most proof of work—the
blockchain that full nodes use to determine which keys control which bitcoins.

To protect himself against conflicting transactions, it would be wise for Bob to wait
until the transaction from Alice is included in the blockchain to a sufficient depth
before he considers the money he received as his to spend (see “Confirmations”
on page 14). For Alice’s transaction to be included in the blockchain, it must be
included in a block of transactions. There are a limited number of blocks produced
in a given amount of time, and each block only has a limited amount of space. Only
the miner who creates that block gets to choose which transactions to include. Miners
may select transactions by any criteria they want, including refusing to include any
transactions at all.

When we say “transactions” in this chapter, we refer to every trans‐
action in a block except for the first transaction. The first transaction
in a block is a coinbase transaction, described in “Coinbase Transac‐
tions” on page 139, which allows the miner of the block to collect
their reward for producing the block. Unlike other transactions, a
coinbase transaction doesn’t spend the output of a previous transac‐
tion and is also an exception to several other rules that apply to other
transactions. Coinbase transactions don’t pay transaction fees, don’t
need to be fee bumped, aren’t subject to transaction pinning, and are
largely uninteresting to the following discussion about fees—so we’re
going to ignore them in this chapter.
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The criterion that almost all miners use to select which transactions to include in
their blocks is to maximize their revenue. Bitcoin was specifically designed to accom‐
modate this by providing a mechanism that allows a transaction to give money to the
miner who includes that transaction in a block. We call that mechanism transaction
fees, although it’s not a fee in the usual sense of that word. It’s not an amount set by
the protocol or by any particular miner—it’s much more like a bid in an auction. The
good being purchased is the portion of limited space in a block that a transaction will
consume. Miners choose the set of transactions whose bids will allow them to earn
the greatest revenue.

In this chapter, we’ll explore various aspects of those bids—transaction fees—and
how they influence the creation and management of Bitcoin transactions.

Who Pays the Transaction Fee?
Most payment systems involve some sort of fee for transacting, but often this fee is
hidden from typical buyers. For example, a merchant may advertise the same item
for the same price whether you pay with cash or a credit card even though their
payment processor may charge them a higher fee for credit transactions than their
bank charges them for cash deposits.

In Bitcoin, every spend of bitcoins must be authenticated (typically with a signature),
so it’s not possible for a transaction to pay a fee without the permission of the
spender. It is possible for the receiver of a transaction to pay a fee in a different
transaction—and we’ll see that in use later—but if we want a single transaction to pay
its own fee, that fee needs to be something agreed upon by the spender. It can’t be
hidden.

Bitcoin transactions are designed so that it doesn’t take any extra space in a transac‐
tion for a spender to commit to the fee it pays. That means that, even though it’s
possible to pay the fee in a different transaction, it’s most efficient (and thus cheapest)
to pay the fee in a single transaction.

In Bitcoin, the fee is a bid and the amount paid contributes to determining how long
it will take the transaction to confirm. Both spenders and receivers of a payment
typically have an interest in having it confirming quickly, so normally allowing only
spenders to choose fees can sometimes be a problem; we’ll look at a solution to that
problem in “Child Pays for Parent (CPFP) Fee Bumping” on page 210. However, in
many common payment flows, the parties with the highest desire to see a transaction
confirm quickly—that is, the parties who would be the most willing to pay higher
fees—are the spenders.

For those reasons, both technical and practical, it is customary in Bitcoin for
spenders to pay transaction fees. There are exceptions, such as for merchants that
accept unconfirmed transactions and in protocols that don’t immediately broadcast
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transactions after they are signed (preventing the spender from being able to choose
an appropriate fee for the current market). We’ll explore those exceptions later.

Fees and Fee Rates
Each transaction only pays a single fee—it doesn’t matter how large the transaction
is. However, the larger transactions become, the fewer of them a miner will be able
to fit in a block. For that reason, miners evaluate transactions the same way you
might comparison shop between several equivalent items at the market: they divide
the price by the quantity.

Whereas you might divide the cost of several different bags of rice by each bag’s
weight to find the lowest price per weight (best deal), miners divide the fee of a
transaction by its size (also called its weight) to find the highest fee per weight (most
revenue). In Bitcoin, we use the term fee rate for a transaction’s size divided by weight.
Due to changes in Bitcoin over the years, fee rate can be expressed in different units:

• BTC/Bytes (a legacy unit rarely used anymore)•
• BTC/Kilobytes (a legacy unit rarely used anymore)•
• BTC/Vbytes (rarely used)•
• BTC/Kilo-vbyte (used mainly in Bitcoin Core)•
• Satoshi/Vbyte (most commonly used today)•
• Satoshi/Weight (also commonly used today)•

We recommend either the sat/vbyte or sat/weight units for displaying fee rates.

Be careful accepting input for fee rates. If a user copies and pastes
a fee rate printed in one denominator into a field using a differ‐
ent denominator, they could overpay fees by 1,000 times. If they
instead switch the numerator, they could theoretically overpay by
100,000,000 times. Wallets should make it hard for the user to pay
an excessive fee rate and may want to prompt the user to confirm
any fee rate that was not generated by the wallet itself using a
trusted data source.
An excessive fee, also called an absurd fee, is any fee rate that’s sig‐
nificantly higher than the amount that fee rate estimators currently
expect is necessary to get a transaction confirmed in the next block.
Note that wallets should not entirely prevent users from choosing
an excessive fee rate—they should only make using such a fee rate
hard to do by accident. There are legitimate reasons for users to
overpay fees on rare occasions.
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Estimating Appropriate Fee Rates
We’ve established that you can pay a lower fee rate if you’re willing to wait longer for
your transaction to be confirmed, with the exception that paying too low of a fee rate
could result in your transaction never confirming. Because fee rates are bids in an
open auction for block space, it’s not possible to perfectly predict what fee rate you
need to pay to get your transaction confirmed by a certain time. However, we can
generate a rough estimate based on what fee rates other transactions have paid in the
recent past.

A full node can record three pieces of information about each transactions it sees:
the time (block height) when it first received that transaction, the block height when
that transaction was confirmed, and the fee rate paid by that transaction. By group‐
ing together transactions that arrived at similar heights, were confirmed at similar
heights, and which paid similar fees, we can calculate how many blocks it took to
confirm transactions paying a certain fee rate. We can then assume that a transaction
paying a similar fee rate now will take a similar number of blocks to confirm. Bitcoin
Core includes a fee rate estimator that uses these principles, which can be called using
the estimatesmartfee RPC with a parameter specifying how many blocks you’re
willing to wait before the transaction is highly likely to confirm (for example, 144
blocks is about 1 day):

$ bitcoin-cli -named estimatesmartfee conf_target=144
{
  "feerate": 0.00006570,
  "blocks": 144
}

Many web-based services also provide fee estimation as an API. For a current list, see
https://oreil.ly/TB6IN.

As mentioned, fee rate estimation can never be perfect. One common problem is
that the fundamental demand might change, adjusting the equilibrium and either
increasing prices (fees) to new heights or decreasing them toward the minimum. If
fee rates go down, then a transaction that previously paid a normal fee rate might
now be paying a high fee rate and it will be confirmed earlier than expected. There’s
no way to lower the fee rate on a transaction you’ve already sent, so you’re stuck
paying a higher fee rate. But, when fee rates go up, there’s a need for methods to be
able to increase the fee rates on those transactions, which is called fee bumping. There
are two commonly used types of fee bumping in Bitcoin, replace by fee (RBF) and
child pays for parent (CPFP).
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Replace By Fee (RBF) Fee Bumping
To increase the fee of a transaction using RBF fee bumping, you create a conflicting
version of the transaction that pays a higher fee. Two or more transactions are
considered to be conflicting transactions if only one of them can be included in a
valid blockchain, forcing a miner to choose only one of them. Conflicts occur when
two or more transactions each try to spend one of the same UTXOs, i.e., they each
include an input that has the same outpoint (reference to the output of a previous
transaction).

To prevent someone from consuming large amounts of bandwidth by creating an
unlimited number of conflicting transactions and sending them through the network
of relaying full nodes, Bitcoin Core and other full nodes that support transaction
replacement require each replacement transaction to pay a higher fee rate than the
transaction being replaced. Bitcoin Core also currently requires the replacement
transaction to pay a higher total fee than the original transaction, but this require‐
ment has undesired side effects and developers have been looking for ways to remove
it at the time of writing.

Bitcoin Core currently supports two variations of RBF:

Opt-in RBF
An unconfirmed transaction can signal to miners and full nodes that the creator
of the transaction wants to allow it to be replaced by a higher fee rate version.
This signal and the rules for using it are specified in BIP125. As of this writing,
this has been enabled by default in Bitcoin Core for several years.

Full RBF
Any unconfirmed transaction can be replaced by a higher fee rate version. As of
this writing, this can be optionally enabled in Bitcoin Core (but it is disabled by
default).

Why Are There Two Variants of RBF?
The reason for the two different versions of RBF is that full RBF has been contro‐
versial. Early versions of Bitcoin allowed transaction replacement, but this behavior
was disabled for several releases. During that time, a miner or full node using the
software now called Bitcoin Core would not replace the first version of an uncon‐
firmed transaction they received with any different version. Some merchants came
to expect this behavior: they assumed that any valid unconfirmed transaction that
paid an appropriate fee rate would eventually become a confirmed transaction, so
they provided their goods or services shortly after receiving such an unconfirmed
transaction.
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However, there’s no way for the Bitcoin protocol to guarantee that any unconfirmed
transaction will eventually be confirmed. As mentioned earlier in this chapter, every
miner gets to choose for themselves which transactions they will try to confirm—
including which versions of those transactions. Bitcoin Core is open source software,
so anyone with a copy of its source code can add (or remove) transaction replace‐
ment. Even if Bitcoin Core wasn’t open source, Bitcoin is an open protocol that can
be reimplemented from scratch by a sufficiently competent programmer, allowing the
reimplementor to include or not include transaction replacement.

Transaction replacement breaks the assumption of some merchants that every rea‐
sonable unconfirmed transaction will eventually be confirmed. An alternative version
of a transaction can pay the same outputs as the original, but it isn’t required to
pay any of those outputs. If the first version of an unconfirmed transaction pays a
merchant, the second version might not pay them. If the merchant provided goods
or services based on the first version, but the second version gets confirmed, then the
merchant will not receive payment for its costs.

Some merchants, and people supporting them, requested that transaction replace‐
ment not be reenabled in Bitcoin Core. Other people pointed out that transaction
replacement provides benefits, including the ability to fee bump transactions that
initially paid too low of a fee rate.

Eventually, developers working on Bitcoin Core implemented a compromise: instead
of allowing every unconfirmed transaction to be replaced (full RBF), they only pro‐
grammed Bitcoin Core to allow replacement of transactions that signaled they wanted
to allow replacement (opt-in RBF). Merchants can check the transactions they receive
for the opt-in signal and treat those transactions differently than those without the
signal.

This doesn’t change the fundamental concern: anyone can still alter their copy of
Bitcoin Core, or create a reimplementation, to allow full RBF—and some developers
even did this, but seemingly few people used their software.

After several years, developers working on Bitcoin Core changed the compromise
slightly. In addition to keeping opt-in RBF by default, they added an option that
allows users to enable full RBF. If enough mining hash rate and relaying full nodes
enable this option, it will be possible for any unconfirmed transaction to eventually be
replaced by a version paying a higher fee rate. As of this writing, it’s not clear whether
or not that has happened yet.

As a user, if you plan to use RBF fee bumping, you will first need to choose a wallet
that supports it, such as one of the wallets listed as having “Sending support” on
https://oreil.ly/IhMzx.

As a developer, if you plan to implement RBF fee bumping, you will first need to
decide whether to perform opt-in RBF or full RBF. At the time of writing, opt-in
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RBF is the only method that’s sure to work. Even if full RBF becomes reliable, there
will likely be several years where replacements of opt-in transactions get confirmed
slightly faster than full-RBF replacements. If you choose opt-in RBF, your wallet will
need to implement the signaling specified in BIP125, which is a simple modification
to any one of the sequence fields in a transaction (see “Sequence” on page 127). If
you choose full RBF, you don’t need to include any signaling in your transactions.
Everything else related to RBF is the same for both approaches.

When you need to fee bump a transaction, you will simply create a new transaction
that spends at least one of the same UTXOs as the original transaction you want to
replace. You will likely want to keep the same outputs in the transaction that pay the
receiver (or receivers). You may pay the increased fee by reducing the value of your
change output or by adding additional inputs to the transaction. Developers should
provide users with a fee-bumping interface that does all of this work for them and
simply asks them (or suggests to them) how much the fee rate should be increased.

Be very careful when creating more than one replacement of the
same transaction. You must ensure than all versions of the transac‐
tions conflict with each other. If they aren’t all conflicts, it may be
possible for multiple separate transactions to confirm, leading you
to overpay the receivers. For example:

• Transaction version 0 includes input A.•
• Transaction version 1 includes inputs A and B (e.g., you had to•

add input B to pay the extra fees)
• Transaction version 2 includes inputs B and C (e.g., you had to•

add input C to pay the extra fees but C was large enough that
you no longer need input A).

In this scenario, any miner who saved version 0 of the transaction
will be able to confirm both it and version 2 of the transaction. If
both versions pay the same receivers, they’ll be paid twice (and the
miner will receive transaction fees from two separate transactions).
A simple method to avoid this problem is to ensure the replace‐
ment transaction always includes all of the same inputs as the
previous version of the transaction.

The advantage of RBF fee bumping over other types of fee bumping is that it can
be very efficient at using block space. Often, a replacement transaction is the same
size as the transaction it replaces. Even when it’s larger, it’s often the same size as the
transaction the user would have created if they had paid the increased fee rate in the
first place.
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The fundamental disadvantage of RBF fee bumping is that it can normally only be
performed by the creator of the transaction—the person or people who were required
to provide signatures or other authentication data for the transaction. An exception
to this is transactions that were designed to allow additional inputs to be added
by using sighash flags (see “Signature Hash Types (SIGHASH)” on page 185), but
that presents its own challenges. In general, if you’re the receiver of an unconfirmed
transaction and you want to make it confirm faster (or at all), you can’t use an RBF
fee bump; you need some other method.

There are additional problems with RBF that we’ll explore in “Transaction Pinning”
on page 212.

Child Pays for Parent (CPFP) Fee Bumping
Anyone who receives the output of an unconfirmed transaction can incentivize
miners to confirm that transaction by spending that output. The transaction you
want to get confirmed is called the parent transaction. A transaction that spends an
output of the parent transaction is called a child transaction.

As we learned in “Outpoint” on page 124, every input in a confirmed transaction
must reference the unspent output of a transaction that appears earlier in the block‐
chain (whether earlier in the same block or in a previous block). That means a
miner who wants to confirm a child transaction must also ensure that its parent
transaction is confirmed. If the parent transaction hasn’t been confirmed yet but the
child transaction pays a high enough fee, the miner can consider whether it would be
profitable to confirm both of them in the same block.

To evaluate the profitability of mining both a parent and child transaction, the miner
looks at them as a package of transactions with an aggregate size and aggregate fees,
from which the fees can be divided by the size to calculate a package fee rate. The
miner can then sort all of the individual transactions and transaction packages they
know about by fee rate and include the highest-revenue ones in the block they’re
attempting to mine, up to the maximum size (weight) allowed to be included in a
block. To find even more packages that might be profitable to mine, the miner can
evaluate packages across multiple generations (e.g., an unconfirmed parent transac‐
tion being combined with both its child and grandchild). This is called ancestor fee
rate mining.

Bitcoin Core has implemented ancestor fee rate mining for many years, and it’s
believed that almost all miners use it at the time of writing. That means it’s practical
for wallets to use this feature to fee bump an incoming transaction by using a child
transaction to pay for its parent (CPFP).

CPFP has several advantages over RBF. Anyone who receives an output from a
transaction can use CPFP—that includes both the receivers of payments and the
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spender (if the spender included a change output). It also doesn’t require replacing
the original transaction, which makes it less disruptive to some merchants than RBF.

The primary disadvantage of CPFP compared to RBF is that CPFP typically uses
more block space. In RBF, a fee bump transaction is often the same size as the
transaction it replaces. In CPFP, a fee bump adds a whole separate transaction. Using
extra block space requires paying extra fees beyond the cost of the fee bump.

There are several challenges with CPFP, some of which we’ll explore in “Transaction
Pinning” on page 212. One other problem that we specifically need to mention is the
minimum relay fee rate problem, which is addressed by package relay.

Package Relay
Early versions of Bitcoin Core didn’t place any limits on the number of unconfirmed
transactions they stored for later relay and mining in their mempools (see “Mempools
and Orphan Pools” on page 244). Of course, computers have physical limits, whether
it’s the memory (RAM) or disk space—it’s not possible for a full node to store
an unlimited number of unconfirmed transactions. Later versions of Bitcoin Core
limited the size of the mempool to hold about one day’s worth of transactions, storing
only the transactions or packages with the highest fee rate.

That works extremely well for most things, but it creates a dependency problem. In
order to calculate the fee rate for a transaction package, we need both the parent
and descendant transactions—but if the parent transaction doesn’t pay a high enough
fee rate, it won’t be kept in a node’s mempool. If a node receives a child transaction
without having access to its parent, it can’t do anything with that transaction.

The solution to this problem is the ability to relay transactions as a package, called
package relay, allowing the receiving node to evaluate the fee rate of the entire
package before operating on any individual transaction. As of this writing, developers
working on Bitcoin Core have made significant progress on implementing package
relay, and a limited early version of it may be available by the time this book is
published.

Package relay is especially important for protocols based on time-sensitive presigned
transactions, such as Lightning Network (LN). In non-cooperative cases, some pre‐
signed transactions can’t be fee bumped using RBF, forcing them to depend on CPFP.
In those protocols, some transactions may also be created long before they need to
be broadcast, making it effectively impossible to estimate an appropriate fee rate. If a
presigned transaction pays a fee rate below the amount necessary to get into a node’s
mempool, there’s no way to fee bump it with a child. If that prevents the transaction
from confirming in time, an honest user might lose money. Package relay is the
solution for this critical problem.
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Transaction Pinning
Although both RBF and CPFP fee bumping work in the basic cases we described, there
are rules related to both methods that are designed to prevent denial-of-service attacks
on miners and relaying full nodes. An unfortunate side effect of those rules is that
they can sometimes prevent someone from being able to use fee bumping. Making it
impossible or difficult to fee bump a transaction is called transaction pinning.

One of the major denial of service concerns revolves around the effect of transaction
relationships. Whenever the output of a transaction is spent, that transaction’s iden‐
tifier (txid) is referenced by the child transaction. However, when a transaction is
replaced, the replacement has a different txid. If that replacement transaction gets
confirmed, none of its descendants can be included in the same blockchain. It’s possi‐
ble to re-create and re-sign the descendant transactions, but that’s not guaranteed to
happen. This has related but divergent implications for RBF and CPFP:

• In the context of RBF, when Bitcoin Core accepts a replacement transaction, it•
keeps things simple by forgetting about the original transaction and all descend‐
ant transactions that depended on that original. To ensure that it’s more profita‐
ble for miners to accept replacements, Bitcoin Core only accepts a replacement
transaction if it pays more fees than all the transactions that will be forgotten.
The downside of this approach is that Alice can create a small transaction that
pays Bob. Bob can then use his output to create a large child transaction. If
Alice then wants to replace her original transaction, she needs to pay a fee that’s
larger than what both she and Bob originally paid. For example, if Alice’s original
transaction was about 100 vbytes and Bob’s transaction was about 100,000 vbytes,
and they both used the same fee rate, Alice now needs to pay more than 1,000
times as much as she originally paid in order to RBF fee bump her transaction.

• In the context of CPFP, any time the node considers including a package in a•
block, it must remove the transactions in that package from any other package it
wants to consider for the same block. For example, if a child transaction pays for
25 ancestors, and each of those ancestors has 25 other children, then including
the package in the block requires updating approximately 625 packages (252).
Similarly, if a transaction with 25 descendants is removed from a node’s mempool
(such as for being included in a block), and each of those descendants has 25
other ancestors, another 625 packages need to be updated. Each time we double
our parameter (e.g., from 25 to 50), we quadruple the amount of work our node
needs to perform.
Additionally, a transaction and all of its descendants is not useful to keep in
a mempool long term if an alternative version of that transaction is mined—
none of those transactions can now be confirmed unless there’s a rare blockchain
reorganization. Bitcoin Core will remove from its mempool every transaction
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that can no longer be confirmed on the current blockchain. At it’s worst, that can
waste an enormous amount of your node’s bandwidth and possibly be used to
prevent transactions from propagating correctly.
To prevent these problems, and other related problems, Bitcoin Core limits a
parent transaction to having a maximum of 25 ancestors or descendants in its
mempool and limits the total size of all those transactions to 100,000 vbytes.
The downside of this approach is that users are prevented from creating CPFP
fee bumps if a transaction already has too many descendants (or if it and its
descendants are too large).

Transaction pinning can happen by accident, but it also represents a serious vulnera‐
bility for multiparty time-sensitive protocols such as LN. If your counterparty can
prevent one of your transactions from confirming by a deadline, they may be able to
steal money from you.

Protocol developers have been working on mitigating problems with transaction
pinning for several years. One partial solution is described in “CPFP Carve Out and
Anchor Outputs” on page 213. Several other solutions have been proposed, and at
least one solution is being actively developed as of this writing—ephemeral anchors.

CPFP Carve Out and Anchor Outputs
In 2018, developers working on LN had a problem. Their protocol uses transactions that
require signatures from two different parties. Neither party wants to trust the other, so
they sign transactions at a point in the protocol when trust isn’t needed, allowing either of
them to broadcast one of those transactions at a later time when the other party may not
want to (or be able to) fulfill its obligations. The problem with this approach is that the
transactions might need to be broadcast at an unknown time, far in the future, beyond
any reasonable ability to estimate an appropriate fee rate for the transactions.

In theory, the developers could have designed their transactions to allow fee bumping
with either RBF (using special sighash flags) or CPFP, but both of those protocols
are vulnerable to transaction pinning. Given that the involved transactions are time
sensitive, allowing a counterparty to use transaction pinning to delay confirmation of
a transaction can easily lead to a repeatable exploit that malicious parties could use to
steal money from honest parties.

LN developer Matt Corallo proposed a solution: give the rules for CPFP fee bumping
a special exception, called CPFP carve out. The normal rules for CPFP forbid the
inclusion of an additional descendant if it would cause a parent transaction to have
26 or more descendants or if it would cause a parent and all of its descendants to
exceed 100,000 vbytes in size. Under the rules of CPFP carve out, a single additional
transaction up to 1,000 vbytes in size can be added to a package even if it would
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exceed the other limits as long as it is a direct child of an unconfirmed transaction
with no unconfirmed ancestors.

For example, Bob and Mallory both co-sign a transaction with two outputs, one to each
of them. Mallory broadcasts that transaction and uses her output to attach either 25
child transactions or any smaller number of child transactions equaling 100,000 vbytes
in size. Without carve-out, Bob would be unable to attach another child transaction to
his output for CPFP fee bumping. With carve-out, he can spend one of the two outputs
in the transaction, the one that belongs to him, as long as his child transaction is less
than 1,000 vbytes in size (which should be more than enough space).

It’s not allowed to use CPFP carve-out more than once, so it only works for two-party
protocols. There have been proposals to extend it to protocols involving more partic‐
ipants, but there hasn’t been much demand for that and developers are focused on
building more generic solutions to transaction pinning attacks.

As of this writing, most popular LN implementations use a transaction template
called anchor outputs, which is designed to be used with CPFP carve out.

Adding Fees to Transactions
The data structure of transactions does not have a field for fees. Instead, fees are
implied as the difference between the sum of inputs and the sum of outputs. Any
excess amount that remains after all outputs have been deducted from all inputs is the
fee that is collected by the miners:

Fees = Sum Inputs − Sum Outputs

This is a somewhat confusing element of transactions and an important point to
understand because if you are constructing your own transactions, you must ensure
you do not inadvertently include a very large fee by underspending the inputs. That
means that you must account for all inputs, if necessary, by creating change, or you
will end up giving the miners a very big tip!

For example, if you spend a 20-bitcoin UTXO to make a 1-bitcoin payment, you must
include a 19-bitcoin change output back to your wallet. Otherwise, the 19-bitcoin
“leftover” will be counted as a transaction fee and will be collected by the miner who
mines your transaction in a block. Although you will receive priority processing and
make a miner very happy, this is probably not what you intended.

If you forget to add a change output in a manually constructed
transaction, you will be paying the change as a transaction fee.
“Keep the change!” might not be what you intended.
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Timelock Defense Against Fee Sniping
Fee sniping is a theoretical attack scenario where miners attempting to rewrite
past blocks “snipe” higher-fee transactions from future blocks to maximize their
profitability.

For example, let’s say the highest block in existence is block #100,000. If instead
of attempting to mine block #100,001 to extend the chain, some miners attempt to
remine #100,000. These miners can choose to include any valid transaction (that
hasn’t been mined yet) in their candidate block #100,000. They don’t have to remine
the block with the same transactions. In fact, they have the incentive to select the
most profitable (highest fee per kB) transactions to include in their block. They
can include any transactions that were in the “old” block #100,000, as well as any
transactions from the current mempool. Essentially they have the option to pull
transactions from the “present” into the rewritten “past” when they re-create block
#100,000.

Today, this attack is not very lucrative because the block subsidy is much higher
than total fees per block. But at some point in the future, transaction fees will be the
majority of the reward (or even the entirety of the reward). At that time, this scenario
becomes inevitable.

Several wallets discourage fee sniping by creating transactions with a lock time that
limits those transactions to being included in the next block or any later block. In
our scenario, our wallet would set lock time to 100,001 on any transaction it created.
Under normal circumstances, this lock time has no effect—the transactions could
only be included in block #100,001 anyway; it’s the next block.

But under a reorganization attack, the miners would not be able to pull high-fee
transactions from the mempool because all those transactions would be timelocked
to block #100,001. They can only remine #100,000 with whatever transactions were
valid at that time, essentially gaining no new fees.

This does not entirely prevent fee sniping, but it does make it less profitable in
some cases and can help preserve the stability of the Bitcoin network as the block
subsidy declines. We recommend all wallets implement anti-fee sniping when it
doesn’t interfere with the wallet’s other uses of the lock time field.

As Bitcoin continues to mature, and as the subsidy continues to decline, fees become
more and more important to Bitcoin users, both in their day-to-day use for getting
transactions confirmed quickly and in providing an incentive for miners to continue
securing Bitcoin transactions with new proof of work.
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CHAPTER 10

The Bitcoin Network

Bitcoin is structured as a peer-to-peer network architecture on top of the internet.
The term peer-to-peer, or P2P, means that the full nodes that participate in the net‐
work are peers to each other, that they can all perform the same functions, and that
there are no “special” nodes. The network nodes interconnect in a mesh network with
a “flat” topology. There is no server, no centralized service, and no hierarchy within
the network. Nodes in a P2P network both provide and consume services at the same
time. P2P networks are inherently resilient, decentralized, and open. A preeminent
example of a P2P network architecture was the early internet itself, where nodes
on the IP network were equal. Today’s internet architecture is more hierarchical,
but the Internet Protocol still retains its flat-topology essence. Beyond Bitcoin and
the internet, the largest and most successful application of P2P technologies is file
sharing, with Napster as the pioneer and BitTorrent as the most recent evolution of
the architecture.

Bitcoin’s P2P network architecture is much more than a topology choice. Bitcoin is a
P2P digital cash system by design, and the network architecture is both a reflection
and a foundation of that core characteristic. Decentralization of control is a core
design principle that can only be achieved and maintained by a flat and decentralized
P2P consensus network.

The term “Bitcoin network” refers to the collection of nodes running the Bitcoin
P2P protocol. In addition to the Bitcoin P2P protocol, there are other protocols
that are used for mining and lightweight wallets. These additional protocols are
provided by gateway routing servers that access the Bitcoin network using the Bitcoin
P2P protocol and then extend that network to nodes running other protocols. For
example, Stratum servers connect Stratum mining nodes via the Stratum protocol
to the main Bitcoin network and bridge the Stratum protocol to the Bitcoin P2P
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protocol. We will describe some of the most commonly used of those protocols in this
chapter in addition to the base Bitcoin P2P protocol.

Node Types and Roles
Although full nodes (peers) in the Bitcoin P2P network are equal to each other, they
may take on different roles depending on the functionality they are supporting. A
Bitcoin full node validates blocks and may contain other functions, such as routing,
mining, and wallet services.

Some nodes, called archival full nodes, also maintain a complete and up-to-date copy
of the blockchain. Those nodes can serve data to clients that store only a subset of the
blockchain and partly verify transactions using a method called simplified payment
verification, or SPV. These clients are known as lightweight clients.

Miners compete to create new blocks by running specialized hardware to solve the
proof-of-work algorithm. Some miners operate full nodes, validating every block on
the blockchain, while others are clients participating in pool mining and depending
on a pool server to provide them with work.

User wallets might connect to the user’s own full node, as is sometimes the case
with desktop Bitcoin clients, but many user wallets, especially those running on
resource-constrained devices such as smartphones, are lightweight nodes.

In addition to the main node types on the Bitcoin P2P protocol, there are servers
and nodes running other protocols, such as specialized mining pool protocols and
lightweight client-access protocols.

The Network
As of this writing, the main Bitcoin network, running the Bitcoin P2P protocol,
consists of about 10,000 listening nodes running various versions of Bitcoin Core
and a few hundred nodes running various other implementations of the Bitcoin
P2P protocol such as BitcoinJ, btcd, and bcoin. A small percentage of the nodes on
the Bitcoin P2P network are also mining nodes. Various individuals and companies
interface with the Bitcoin network by running archival full nodes, with full copies
of the blockchain and a network node, but without mining or wallet functions.
These nodes act as network edge routers, allowing various other services (exchanges,
wallets, block explorers, merchant payment processing) to be built on top.
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Compact Block Relay
When a miner finds a new block, they announce it to the Bitcoin network (which
includes other miners). The miner who found that block can start building on top of
it immediately; all other miners who haven’t learned about the block yet will continue
building on top of the previous block until they do learn about it.

If, before they learn about the new block, one of those other miners creates a block,
their block will be in competition with the first miner’s new block. Only one of the
blocks will ever be included in the blockchain used by all full nodes, and miners only
get paid for blocks that are widely accepted.

Whichever block has a second block built on top of it first wins (unless there’s
another near-tie), which is called a block-finding race and is illustrated in Figure 10-1.
Block-finding races give the advantage to the largest miners, so they act in opposition
to Bitcoin’s essential decentralization. To prevent block-finding races and allow min‐
ers of any size to participate equally in the lottery that is Bitcoin mining, it’s extremely
useful to minimize the time between when one miner announces a new block and
when other miners receive that block.

Figure 10-1. A blockchain fork requiring a mining race.

In 2015, a new version of Bitcoin Core added a feature called compact block relay
(specified in BIP152) that allows transferring new blocks both faster and with less
bandwidth.

As background, full nodes that relay unconfirmed transactions also store many of
those transactions in their mempools (see “Mempools and Orphan Pools” on page
244). When some of those transactions are confirmed in a new block, the node
doesn’t need to receive a second copy of those transactions.

Instead of receiving redundant unconfirmed transactions, compact blocks allow a
peer to instead send a short 6-byte identifier for each transaction. When your node
receives a compact block with one or more identifiers, it checks its mempool for
those transactions and uses them if they are found. For any transaction that isn’t
found in your local node’s mempool, your node can send a request to the peer for a
copy.
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Conversely, if the remote peer believes your node’s mempool doesn’t have some of
the transactions that appear in the block, it can include a copy of those transactions
in the compact block. For example, Bitcoin Core always sends a block’s coinbase
transaction.

If the remote peer guesses correctly about what transactions your node has in its
mempool, and which it does not, it will send a block nearly as efficiently as is
theoretically possible (for a typical block, it’ll be between 97% and 99% efficient).

Compact block relay does not decrease the size of blocks. It just
prevents the redundant transfer of information that a node already
has. When a node doesn’t previously have information about a
block, for example when a node is first started, it must receive
complete copies of each block.

There are two modes that Bitcoin Core currently implements for sending compact
blocks, illustrated in Figure 10-2:

Low-bandwidth mode
When your node requests that a peer use low-bandwidth mode (the default), that
peer will tell your node the 32-byte identifier (header hash) of a new block but
will not send your node any details about it. If your node acquires that block first
from another source, this avoids wasting any more of your bandwidth acquiring
a redundant copy of that block. If your node does need the block, it will request a
compact block.

High-bandwidth mode
When your node requests that a peer use high-bandwidth mode, that peer will
send your node a compact block for a new block even before it has fully verified
that the block is valid. The only validation the peer will perform is ensuring that
the block’s header contains the correct amount of proof of work. Since proof of
work is expensive to generate (about $150,000 USD at the time of writing), it’s
unlikely that a miner would fake it just to waste the bandwidth of relay nodes.
Skipping validation before relay allows new blocks to travel across the network
with minimal delays at each hop.

The downside of high-bandwidth mode is that your node is likely to receive
redundant information from each high-bandwidth peer it chooses. As of this
writing, Bitcoin Core currently only asks three peers to use high-bandwidth
mode (and it tries to choose peers that have a history of quickly announcing
blocks).
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Figure 10-2. BIP152 modes compared (from BIP152). The shaded bar indicates the time
it takes the node to validate the block.

The names of the two methods (which are taken from BIP152) can be a bit confus‐
ing. Low-bandwidth mode saves bandwidth by not sending blocks in most cases.
High-bandwidth mode uses more bandwidth than low-bandwidth mode but, in most
cases, much less bandwidth than was used for block relay before compact blocks were
implemented.

Private Block Relay Networks
Although compact blocks go a long way toward minimizing the time it takes for
blocks to propagate across the network, it’s possible to minimize latency further.
Unlike compact blocks, though, the other solutions involve trade-offs that make them
unavailable or unsuitable for the public P2P relay network. For that reason, there has
been experimentation with private relay networks for blocks.

One simple technique is to preselect a route between endpoints. For example, a relay
network with servers running in datacenters near major trans-oceanic fiber optic
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lines might be able to forward new blocks faster than waiting for the block to arrive at
the node run by some home user many kilometers away from the fiber optic line.

Another, more complex technique, is Forward Error Correction (FEC). This allows
a compact block message to be split into several parts, with each part having extra
data appended. If any of the parts isn’t received, that part can be reconstructed from
the parts that are received. Depending on the settings, up to several parts may be
reconstructed if they are lost.

FEC avoids the problem of a compact block (or some parts of it) not arriving due to
problems with the underlying network connection. Those problems frequently occur
but we don’t often notice them because we mostly use protocols that automatically
re-request the missing data. However, requesting missing data triples the time to
receive it. For example:

1. Alice sends some data to Bob.1.
2. Bob doesn’t receive the data (or it is damaged). Bob re-requests the data from2.

Alice.
3. Alice sends the data again.3.

A third technique is to assume all nodes receiving the data have almost all of the same
transactions in their mempool, so they can all accept the same compact block. That
not only saves us time computing a compact block at each hop, but it means that each
hop can simply relay the FEC packets to the next hop even before validating them.

The trade-off for each of the preceding methods is that they work well with centrali‐
zation but not in a decentralized network where individual nodes can’t trust other
nodes. Servers in datacenters cost money and can often be accessed by operators of
the datacenter, making them less trustworthy than a secure home computer. Relaying
data before validating makes it easy to waste bandwidth, so it can only reasonably
be used on a private network where there’s some level of trust and accountability
between parties.

The original Bitcoin Relay Network was created by developer Matt Corallo in 2015
to enable fast synchronization of blocks between miners with very low latency. The
network consisted of several virtual private servers (VPSes) hosted on infrastructure
around the world and served to connect the majority of miners and mining pools.

The original Bitcoin Relay Network was replaced in 2016 with the introduction
of the Fast Internet Bitcoin Relay Engine or FIBRE, also created by developer Matt
Corallo. FIBRE is software that allows operating a UDP-based relay network that
relays blocks within a network of nodes. FIBRE implements FEC and the compact
block optimization to further reduce the amount of data transmitted and the network
latency.
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Network Discovery
When a new node boots up, it must discover other Bitcoin nodes on the network
in order to participate. To start this process, a new node must discover at least
one existing node on the network and connect to it. The geographic location of
other nodes is irrelevant; the Bitcoin network topology is not geographically defined.
Therefore, any existing Bitcoin nodes can be selected at random.

To connect to a known peer, nodes establish a TCP connection, usually to port 8333
(the port generally known as the one used by Bitcoin), or an alternative port if one
is provided. Upon establishing a connection, the node will start a “handshake” (see
Figure 10-3) by transmitting a version message, which contains basic identifying
information, including:

Version

The Bitcoin P2P protocol version the client “speaks” (e.g., 70002)

nLocalServices

A list of local services supported by the node

nTime

The current time

addrYou

The IP address of the remote node, as seen from this node

addrMe

The IP address of the local node, as discovered by the local node

subver

A subversion showing the type of software running on this node
(e.g., /Satoshi:0.9.2.1/)

BestHeight

The block height of this node’s blockchain

fRelay

A field added by BIP37 for requesting not to receive unconfirmed transactions

The version message is always the first message sent by any peer to another peer.
The local peer receiving a version message will examine the remote peer’s reported
Version and decide if the remote peer is compatible. If the remote peer is compatible,
the local peer will acknowledge the version message and establish a connection by
sending a verack.
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How does a new node find peers? The first method is to query DNS using a number
of DNS seeds, which are DNS servers that provide a list of IP addresses of Bitcoin
nodes. Some of those DNS seeds provide a static list of IP addresses of stable
Bitcoin listening nodes. Some of the DNS seeds are custom implementations of
BIND (Berkeley Internet Name Daemon) that return a random subset from a list of
Bitcoin node addresses collected by a crawler or a long-running Bitcoin node. The
Bitcoin Core client contains the names of several different DNS seeds. The diversity
of ownership and diversity of implementation of the different DNS seeds offers a high
level of reliability for the initial bootstrapping process. In the Bitcoin Core client, the
option to use the DNS seeds is controlled by the option switch -dnsseed (set to 1 by
default, to use the DNS seed).

Alternatively, a bootstrapping node that knows nothing of the network must be given
the IP address of at least one Bitcoin node, after which it can establish connections
through further introductions. The command-line argument -seednode can be used
to connect to one node just for introductions using it as a seed. After the initial seed
node is used to form introductions, the client will disconnect from it and use the
newly discovered peers.

Figure 10-3. The initial handshake between peers.

Once one or more connections are established, the new node will send an addr
message containing its own IP address to its neighbors. The neighbors will, in turn,
forward the addr message to their neighbors, ensuring that the newly connected node
becomes well known and better connected. Additionally, the newly connected node
can send getaddr to its neighbors, asking them to return a list of IP addresses of
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other peers. That way, a node can find peers to connect to and advertise its existence
on the network for other nodes to find it. Figure 10-4 shows the address discovery
protocol.

Figure 10-4. Address propagation and discovery.

A node must connect to a few different peers in order to establish diverse paths into
the Bitcoin network. Paths are not reliable—nodes come and go—and so the node
must continue to discover new nodes as it loses old connections as well as assist other
nodes when they bootstrap. Only one connection is needed to bootstrap because the
first node can offer introductions to its peer nodes and those peers can offer further
introductions. It’s also unnecessary and wasteful of network resources to connect
to more than a handful of nodes. After bootstrapping, a node will remember its
most recent successful peer connections so if it is rebooted, it can quickly reestablish
connections with its former peer network. If none of the former peers respond to its
connection request, the node can use the seed nodes to bootstrap again.

On a node running the Bitcoin Core client, you can list the peer connections with the
command getpeerinfo:

$ bitcoin-cli getpeerinfo

[
  {
    "id": 0,
    "addr": "82.64.116.5:8333",
    "addrbind": "192.168.0.133:50564",
    "addrlocal": "72.253.6.11:50564",
    "network": "ipv4",
    "services": "0000000000000409",
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    "servicesnames": [
      "NETWORK",
      "WITNESS",
      "NETWORK_LIMITED"
    ],
    "lastsend": 1683829947,
    "lastrecv": 1683829989,
    "last_transaction": 0,
    "last_block": 1683829989,
    "bytessent": 3558504,
    "bytesrecv": 6016081,
    "conntime": 1683647841,
    "timeoffset": 0,
    "pingtime": 0.204744,
    "minping": 0.20337,
    "version": 70016,
    "subver": "/Satoshi:24.0.1/",
    "inbound": false,
    "bip152_hb_to": true,
    "bip152_hb_from": false,
    "startingheight": 788954,
    "presynced_headers": -1,
    "synced_headers": 789281,
    "synced_blocks": 789281,
    "inflight": [
    ],
    "relaytxes": false,
    "minfeefilter": 0.00000000,
    "addr_relay_enabled": false,
    "addr_processed": 0,
    "addr_rate_limited": 0,
    "permissions": [
    ],
    "bytessent_per_msg": {
      ...
    },
    "bytesrecv_per_msg": {
      ...
    },
    "connection_type": "block-relay-only"
  },
]

To override the automatic management of peers and to specify a list of IP addresses,
users can provide the option -connect=<IPAddress> and specify one or more IP
addresses. If this option is used, the node will only connect to the selected IP
addresses instead of discovering and maintaining the peer connections automatically.

If there is no traffic on a connection, nodes will periodically send a message to main‐
tain the connection. If a node has not communicated on a connection for too long,
it is assumed to be disconnected and a new peer will be sought. Thus, the network
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dynamically adjusts to transient nodes and network problems and can organically
grow and shrink as needed without any central control.

Full Nodes
Full nodes are nodes that verify every transaction in every block on the valid block‐
chain with the most proof of work.

Full nodes independently process every block, starting after the very first block
(genesis block) and building up to the latest known block in the network. A full node
can independently and authoritatively verify any transaction. The full node relies
on the network to receive updates about new blocks of transactions, which it then
verifies and incorporates into its local view of which scripts control which bitcoins,
called the set of unspent transaction outputs (UTXOs).

Running a full node gives you the pure Bitcoin experience: independent verification
of all transactions without the need to rely on, or trust, any other systems.

There are a few alternative implementations of full nodes, built using different pro‐
gramming languages and software architectures, or which made different design
decisions. However, the most common implementation is Bitcoin Core. More
than 95% of full nodes on the Bitcoin network run various versions of Bitcoin
Core. It is identified as “Satoshi” in the subversion string sent in the version
message and shown by the command getpeerinfo as we saw earlier; for exam‐
ple, /Satoshi:24.0.1/.

Exchanging “Inventory”
The first thing a full node will do once it connects to peers is try to construct a
complete chain of block headers. If it is a brand-new node and has no blockchain at
all, it only knows one block, the genesis block, which is statically embedded in the
client software. Starting after block #0 (the genesis block), the new node will have
to download hundreds of thousands of blocks to synchronize with the network and
reestablish the full blockchain.

The process of syncing the blockchain starts with the version message because that
contains BestHeight, a node’s current blockchain height (number of blocks). A node
will see the version messages from its peers, know how many blocks they each have,
and be able to compare to how many blocks it has in its own blockchain. Peered
nodes will exchange a getheaders message that contains the hash of the top block on
their local blockchain. One of the peers will be able to identify the received hash as
belonging to a block that is not at the top, but rather belongs to an older block, thus
deducing that its own local blockchain is longer than the remote node’s blockchain.
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The peer that has the longer blockchain has more blocks than the other node and can
identify which headers the other node needs in order to “catch up.” It will identify the
first 2,000 headers to share using a headers message. The node will keep requesting
additional headers until it has received one for every block the remote peer claims to
have.

In parallel, the node will begin requesting the blocks for each header it previously
received using a getdata message. The node will request different blocks from each
of its selected peers, which allows it to drop connections to peers that are significantly
slower than the average in order to find newer (and possibly faster) peers.

Let’s assume, for example, that a node only has the genesis block. It will then receive a
headers message from its peers containing the headers of the next 2,000 blocks in the
chain. It will start requesting blocks from all of its connected peers, keeping a queue
of up to 1,024 blocks. Blocks need to be validated in order, so if the oldest block in
the queue—the block the node next needs to validate—hasn’t been received yet, the
node drops the connection to the peer that was supposed to provide that block. It
then finds a new peer that may be able to provide one block before all of the node’s
other peers are able to provide 1,023 blocks.

As each block is received, it is added to the blockchain, as we will see in Chapter 11.
As the local blockchain is gradually built up, more blocks are requested and received,
and the process continues until the node catches up to the rest of the network.

This process of comparing the local blockchain with the peers and retrieving any
missing blocks happens any time a node has been offline for an extended period of
time.

Lightweight Clients
Many Bitcoin clients are designed to run on space- and power-constrained devices,
such as smartphones, tablets, or embedded systems. For such devices, a simplified
payment verification (SPV) method is used to allow them to operate without validat‐
ing the full blockchain. These types of clients are called lightweight clients.

Lightweight clients download only the block headers and do not download the trans‐
actions included in each block. The resulting chain of headers, without transactions,
is about 10,000 times smaller than the full blockchain. Lightweight clients cannot
construct a full picture of all the UTXOs that are available for spending because
they do not know about all the transactions on the network. Instead, they verify
transactions using a slightly different method that relies on peers to provide partial
views of relevant parts of the blockchain on demand.

As an analogy, a full node is like a tourist in a strange city, equipped with a detailed
map of every street and every address. By comparison, a lightweight client is like a
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tourist in a strange city asking random strangers for turn-by-turn directions while
knowing only one main avenue. Although both tourists can verify the existence of
a street by visiting it, the tourist without a map doesn’t know what lies down any
of the side streets and doesn’t know what other streets exist. Positioned in front
of 23 Church Street, the tourist without a map cannot know if there are a dozen
other “23 Church Street” addresses in the city and whether this is the right one. The
mapless tourist’s best chance is to ask enough people and hope some of them are not
trying to mug him.

Lightweight clients verify transactions by reference to their depth in the blockchain.
Whereas a full node will construct a fully verified chain of thousands of blocks and
millions of transactions reaching down the blockchain (back in time) all the way to
the genesis block, a lightweight client will verify the proof of work of all blocks (but
not whether the blocks and all of their transactions are valid) and link that chain to
the transaction of interest.

For example, when examining a transaction in block 800,000, a full node verifies
all 800,000 blocks down to the genesis block and builds a full database of UTXOs,
establishing the validity of the transaction by confirming that the transaction exists
and its output remains unspent. A lightweight client can only verify that the trans‐
action exists. The client establishes a link between the transaction and the block
that contains it, using a merkle path (see “Merkle Trees” on page 252). Then, the
lightweight client waits until it sees the six blocks 800,001 through 800,006 piled on
top of the block containing the transaction and verifies it by establishing its depth
under blocks 800,006 to 800,001. The fact that other nodes on the network accepted
block 800,000 and that miners did the necessary work to produce six more blocks on
top of it is proof, by proxy, that the transaction actually exists.

A lightweight client cannot normally be persuaded that a transaction exists in a
block when the transaction does not in fact exist. The lightweight client establishes
the existence of a transaction in a block by requesting a merkle path proof and by
validating the proof of work in the chain of blocks. However, a transaction’s existence
can be “hidden” from a lightweight client. A lightweight client can definitely verify
that a transaction exists but cannot verify that a transaction, such as a double-spend
of the same UTXO, doesn’t exist because it doesn’t have a record of all transactions.
This vulnerability can be used in a denial-of-service attack or for a double-spending
attack against lightweight clients. To defend against this, a lightweight client needs to
connect randomly to several clients to increase the probability that it is in contact
with at least one honest node. This need to randomly connect means that lightweight
clients also are vulnerable to network partitioning attacks or Sybil attacks, where they
are connected to fake nodes or fake networks and do not have access to honest nodes
or the real Bitcoin network.
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For many practical purposes, well-connected lightweight clients are secure enough,
striking a balance between resource needs, practicality, and security. For infallible
security, however, nothing beats running a full node.

A full node verifies a transaction by checking the entire chain of
thousands of blocks below it in order to guarantee that the UTXO
exists and is not spent, whereas a lightweight client only proves
that a transaction exists and checks that the block containing that
transaction is buried by a handful of blocks above it.

To get the block headers it needs to verify a transaction is part of the chain, light‐
weight clients use a getheaders message. The responding peer will send up to 2,000
block headers using a single headers message. See the illustration in Figure 10-5.

Figure 10-5. Lightweight client synchronizing the block headers.

Block headers allow a lightweight client to verify that any individual block belongs to
the blockchain with the most proof of work, but they don’t tell the client which blocks
contain transactions that are interesting to its wallet. The client could download every
block and check, but that would use a large fraction of the resources it would take to
run a full node, so developers have looked for other ways to solve the problem.
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Shortly after the introduction of lightweight clients, Bitcoin developers added a
feature called bloom filters in an attempt to reduce the bandwidth that lightweight
clients needed to use to learn about their incoming and outgoing transactions. Bloom
filters allow lightweight clients to receive a subset of the transactions without directly
revealing precisely which addresses they are interested in, through a filtering mecha‐
nism that uses probabilities rather than fixed patterns.

Bloom Filters
A bloom filter is a probabilistic search filter, a way to describe a desired pattern
without specifying it exactly. Bloom filters offer an efficient way to express a search
pattern while protecting privacy. They are used by lightweight clients to ask their
peers for transactions matching a specific pattern without revealing exactly which
addresses, keys, or transactions they are searching for.

In our previous analogy, a tourist without a map is asking for directions to a specific
address, “23 Church St.” If they ask a stranger for directions to this street, they
inadvertently reveal their destination. A bloom filter is like asking, “Are there any
streets in this neighborhood whose name ends in R-C-H?” A question like that
reveals slightly less about the desired destination than asking for “23 Church St.”
Using this technique, a tourist could specify the desired address in more detail such
as “ending in U-R-C-H” or less detail such as “ending in H.” By varying the precision
of the search, the tourist reveals more or less information at the expense of getting
more or less specific results. If they ask for a less specific pattern, they get a lot more
possible addresses and better privacy, but many of the results are irrelevant. If they
ask for a very specific pattern, they get fewer results but lose privacy.

Bloom filters serve this function by allowing a lightweight client to specify a search
pattern for transactions that can be tuned toward precision or privacy. A more
specific bloom filter will produce accurate results, but at the expense of revealing
what patterns the lightweight client is interested in, thus revealing the addresses
owned by the user’s wallet. A less specific bloom filter will produce more data about
more transactions, many irrelevant to the client, but will allow the client to maintain
better privacy.

How Bloom Filters Work
Bloom filters are implemented as a variable-size array of N binary digits (a bit field)
and a variable number of M hash functions. The hash functions are designed to
always produce an output that is between 1 and N, corresponding to the array of
binary digits. The hash functions are generated deterministically, so that any client
implementing a bloom filter will always use the same hash functions and get the
same results for a specific input. By choosing different length (N) bloom filters and
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a different number (M) of hash functions, the bloom filter can be tuned, varying the
level of accuracy and therefore privacy.

In Figure 10-6, we use a very small array of 16 bits and a set of three hash functions to
demonstrate how bloom filters work.

Figure 10-6. An example of a simplistic bloom filter, with a 16-bit field and three hash
functions.

The bloom filter is initialized so that the array of bits is all zeros. To add a pattern
to the bloom filter, the pattern is hashed by each hash function in turn. Applying
the first hash function to the input results in a number between 1 and N. The
corresponding bit in the array (indexed from 1 to N) is found and set to 1, thereby
recording the output of the hash function. Then, the next hash function is used to
set another bit and so on. Once all M hash functions have been applied, the search
pattern will be “recorded” in the bloom filter as M bits that have been changed from 0
to 1.

Figure 10-7 is an example of adding a pattern “A” to the simple bloom filter shown in
Figure 10-6.

Adding a second pattern is as simple as repeating this process. The pattern is hashed
by each hash function in turn, and the result is recorded by setting the bits to 1.
Note that as a bloom filter is filled with more patterns, a hash function result might
coincide with a bit that is already set to 1, in which case the bit is not changed.
In essence, as more patterns record on overlapping bits, the bloom filter starts to
become saturated with more bits set to 1 and the accuracy of the filter decreases. This
is why the filter is a probabilistic data structure—it gets less accurate as more patterns
are added. The accuracy depends on the number of patterns added versus the size of
the bit array (N) and number of hash functions (M). A larger bit array and more hash
functions can record more patterns with higher accuracy. A smaller bit array or fewer
hash functions will record fewer patterns and produce less accuracy.
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Figure 10-7. Adding a pattern “A” to our simple bloom filter.

Figure 10-8 is an example of adding a second pattern “B” to the simple bloom filter.

Figure 10-8. Adding a second pattern “B” to our simple bloom filter.
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To test if a pattern is part of a bloom filter, the pattern is hashed by each hash
function and the resulting bit pattern is tested against the bit array. If all the bits
indexed by the hash functions are set to 1, then the pattern is probably recorded in the
bloom filter. Because the bits may be set because of overlap from multiple patterns,
the answer is not certain, but is rather probabilistic. In simple terms, a bloom filter
positive match is a “Maybe, yes.”

Figure 10-9 is an example of testing the existence of pattern “X” in the simple bloom
filter. The corresponding bits are set to 1, so the pattern is probably a match.

Figure 10-9. Testing the existence of pattern “X” in the bloom filter. The result is a
probabilistic positive match, meaning “Maybe.”

On the contrary, if a pattern is tested against the bloom filter and any one of the bits
is set to 0, this proves that the pattern was not recorded in the bloom filter. A negative
result is not a probability, it is a certainty. In simple terms, a negative match on a
bloom filter is a “Definitely not!”

Figure 10-10 is an example of testing the existence of pattern “Y” in the simple bloom
filter. One of the corresponding bits is set to 0, so the pattern is definitely not a match.
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Figure 10-10. Testing the existence of pattern “Y” in the bloom filter. The result is a
definitive negative match, meaning “Definitely Not!”

How Lightweight Clients Use Bloom Filters
Bloom filters are used to filter the transactions (and blocks containing them) that a
lightweight client receives from its peers, selecting only transactions of interest to the
lightweight client without revealing exactly which addresses or keys it is interested in.

A lightweight client will initialize a bloom filter as “empty”; in that state, the bloom
filter will not match any patterns. The lightweight client will then make a list of all
the addresses, keys, and hashes that it is interested in. It will do this by extracting
the public key hash, script hash, and transaction IDs from any UTXO controlled by
its wallet. The lightweight client then adds each of these to the bloom filter so that
the bloom filter will “match” if these patterns are present in a transaction, without
revealing the patterns themselves.

The lightweight client will then send a filterload message to the peer containing the
bloom filter to use on the connection. On the peer, bloom filters are checked against
each incoming transaction. The full node checks several parts of the transaction
against the bloom filter, looking for a match including:

• The transaction ID
• The data components from the scripts of each of the transaction outputs (every

key and hash in the script)
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• Each of the transaction inputs
• Each of the input signature data components (or witness scripts)

By checking against all these components, bloom filters can be used to match public
key hashes, scripts, OP_RETURN values, public keys in signatures, or any future compo‐
nent of a smart contract or complex script.

After a filter is established, the peer will then test each transaction’s outputs against
the bloom filter. Only transactions that match the filter are sent to the client.

In response to a getdata message from the client, peers will send a merkleblock
message that contains only block headers for blocks matching the filter and a merkle
path (see “Merkle Trees” on page 252) for each matching transaction. The peer will
then also send tx messages containing the transactions matched by the filter.

As the full node sends transactions to the lightweight client, the lightweight client
discards any false positives and uses the correctly matched transactions to update its
UTXO set and wallet balance. As it updates its own view of the UTXO set, it also
modifies the bloom filter to match any future transactions referencing the UTXO it
just found. The full node then uses the new bloom filter to match new transactions
and the whole process repeats.

The client setting the bloom filter can interactively add patterns to the filter by send‐
ing a filteradd message. To clear the bloom filter, the client can send a filterclear
message. Because it is not possible to remove a pattern from a bloom filter, a client
has to clear and resend a new bloom filter if a pattern is no longer desired.

The network protocol and bloom filter mechanism for lightweight clients is defined
in BIP37.

Unfortunately, after the deployment of bloom filters, it became clear that they didn’t
offer very much privacy. A full node receiving a bloom filter from a peer could
apply that filter to the entire blockchain to find all of the client’s transactions (plus
false positives). It could then look for patterns and relationships between the trans‐
actions. Randomly selected false positive transactions would be unlikely to have a
parent-child relationship from output to input, but transactions from the user’s wallet
would be very likely to have that relationship. If all of the related transactions have
certain characteristics, such as at least one P2PKH output, then transactions without
that characteristic can be assumed not to belong to the wallet.

It was also discovered that specially constructed filters could force the full nodes
that processed them to perform a large amount of work, which could lead to denial-
of-service attacks.

For both of those reasons, Bitcoin Core eventually limited support for bloom filters
to only clients on IP addresses that were explicitly allowed by the node operator.
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This meant that an alternative method for helping lightweight clients find their
transactions was needed.

Compact Block Filters
An idea was posted to the Bitcoin-Dev mailing list by an anonymous developer in
2016 of reversing the bloom filter process. With a BIP37 bloom filter, each client
hashes their addresses to create a bloom filter and nodes hash parts of each transac‐
tion to attempt to match that filter. In the new proposal, nodes hash parts of each
transaction in a block to create a bloom filter and clients hash their addresses to
attempt to match that filter. If a client finds a match, they download the entire block.

Despite the similarities in names, BIP152 compact blocks and
BIP157/158 compact block filters are unrelated.

This allows nodes to create a single filter for every block, which they can save
to disk and serve over and over, eliminating the denial-of-service vulnerabilities
with BIP37. Clients don’t give full nodes any information about their past or future
addresses. They only download blocks, which may contain thousands of transactions
that weren’t created by the client. They can even download each matching block from
a different peer, making it harder for full nodes to connect transactions belonging to a
single client across multiple blocks.

This idea for server-generated filters doesn’t offer perfect privacy; it still places some
costs on full nodes (and it does require lightweight clients to use more bandwidth for
the block download), and the filters can only be used for confirmed transactions (not
unconfirmed transactions). However, it is much more private and reliable than BIP37
client-requested bloom filters.

After the description of the original idea based on bloom filters, developers realized
there was a better data structure for server-generated filters, called Golomb-Rice
Coded Sets (GCS).

Golomb-Rice Coded Sets (GCS)
Imagine that Alice wants to send a list of numbers to Bob. The simple way to do that
is to just send him the entire list of numbers:

849
653
476
900
379
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But there’s a more efficient way. First, Alice puts the list in numerical order:

379
476
653
849
900

Then, Alice sends the first number. For the remaining numbers, she sends the differ‐
ence between that number and the preceding number. For example, for the second
number, she sends 97 (476 – 379); for the third number, she sends 177 (653 – 476);
and so on:

379
97
177
196
51

We can see that the differences between two numbers in an ordered list produces
numbers that are shorter than the original numbers. Upon receiving this list, Bob can
reconstruct the original list by simply adding each number with its predecessor. That
means we save space without losing any information, which is called lossless encoding.

If we randomly select numbers within a fixed range of values, then the more numbers
we select, the smaller the average (mean) size of the differences. That means the
amount of data we need to transfer doesn’t increase as fast as the length of our list
increases (up to a point).

Even more usefully, the length of the randomly selected numbers in a list of differ‐
ences is naturally biased toward smaller lengths. Consider selecting two random
numbers from 1 to 6; this is the same as rolling two dice. There are 36 distinct
combinations of two dice:

1 1 1 2 1 3 1 4 1 5 1 6

2 1 2 2 2 3 2 4 2 5 2 6

3 1 3 2 3 3 3 4 3 5 3 6

4 1 4 2 4 3 4 4 4 5 4 6

5 1 5 2 5 3 5 4 5 5 5 6

6 1 6 2 6 3 6 4 6 5 6 6

Let’s find the difference between the larger of the numbers and the smaller of the
numbers:
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0 1 2 3 4 5

1 0 1 2 3 4

2 1 0 1 2 3

3 2 1 0 1 2

4 3 2 1 0 1

5 4 3 2 1 0

If we count the frequency of each difference occurring, we see that the small differ‐
ences are much more likely to occur than the large differences:

Difference Occurrences
0 6

1 10

2 8

3 6

4 4

5 2

If we know that we might need to store large numbers (because large differences can
happen, even if they are rare), but we’ll most often need to store small numbers, we
can encode each number using a system that uses less space for small numbers and
extra space for large numbers. On average, that system will perform better than using
the same amount of space for every number.

Golomb coding provides that facility. Rice coding is a subset of Golomb coding that’s
more convenient to use in some situations, including the application of Bitcoin block
filters.

What Data to Include in a Block Filter
Our primary goal is to allow wallets to learn whether a block contains a transaction
affecting that wallet. For a wallet to be effective, it needs to learn two types of
information:

When it has received money
Specifically, when a transaction output contains a script that the wallet controls
(such as by controlling the authorized private key)

When it has spent money
Specifically, when a transaction input references a previous transaction output
that the wallet controlled
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A secondary goal during the design of compact block filters was to allow the wallet
receiving the filter to verify that it received an accurate filter from a peer. For
example, if the wallet downloaded the block from which the filter was created, the
wallet could generate its own filter. It could then compare its filter to the peer’s filter
and verify that they were identical, proving the peer had generated an accurate filter.

For both the primary and secondary goals to be met, a filter would need to reference
two types of information:

• The script for every output in every transaction in a block•
• The outpoint for every input in every transaction in a block•

An early design for compact block filters included both of those pieces of informa‐
tion, but it was realized there was a more efficient way to accomplish the primary
goal if we sacrificed the secondary goal. In the new design, a block filter would still
reference two types of information, but they’d be more closely related:

• As before, the script for every output in every transaction in a block.•
• In a change, it would also reference the script of the output referenced by the•

outpoint for every input in every transaction in a block. In other words, the
output script being spent.

This had several advantages. First, it meant that wallets didn’t need to track outpoints;
they could instead just scan for the output scripts to which they expected to receive
money. Second, any time a later transaction in a block spends the output of an earlier
transaction in the same block, they’ll both reference the same output script. More
than one reference to the same output script is redundant in a compact block filter, so
the redundant copies can be removed, shrinking the size of the filters.

When full nodes validate a block, they need access to the output scripts for both
the current transaction outputs in a block and the transaction outputs from previous
blocks that are being referenced in inputs, so they’re able to build compact block
filters in this simplified model. But a block itself doesn’t include the output scripts
from transactions included in previous blocks, so there’s no convenient way for a
client to verify a block filter was built correctly. However, there is an alternative that
can help a client detect if a peer is lying to it: obtaining the same filter from multiple
peers.

Downloading Block Filters from Multiple Peers
A peer can provide a wallet with an inaccurate filter. There are two ways to create
an inaccurate filter. The peer can create a filter that references transactions that
don’t actually appear in the associated block (a false positive). Alternatively, the peer
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can create a filter that doesn’t reference transactions that do actually appear in the
associated block (a false negative).

The first protection against an inaccurate filter is for a client to obtain a filter from
multiple peers. The BIP157 protocol allows a client to download just a short 32-byte
commitment to a filter to determine whether each peer is advertising the same filter
as all of the client’s other peers. That minimizes the amount of bandwidth the client
must expend to query many different peers for their filters, if all of those peers agree.

If two or more different peers have different filters for the same block, the client can
download all of them. It can then also download the associated block. If the block
contains any transaction related to the wallet that is not part of one of the filters,
then the wallet can be sure that whichever peer created that filter was inaccurate—
Golomb-Rice Coded Sets will always include a potential match.

Alternatively, if the block doesn’t contain a transaction that the filter said might
match the wallet, that isn’t proof that the filter was inaccurate. To minimize the size
of a GCS, we allow a certain number of false positives. What the wallet can do is
continue downloading additional filters from the peer, either randomly or when they
indicate a match, and then track the client’s false positive rate. If it differs significantly
from the false positive rate that filters were designed to use, the wallet can stop using
that peer. In most cases, the only consequence of the inaccurate filter is that the wallet
uses more bandwidth than expected.

Reducing Bandwidth with Lossy Encoding
The data about the transactions in a block that we want to communicate is an output
script. Output scripts vary in length and follow patterns, which means the differences
between them won’t be evenly distributed like we want. However, we’ve already seen
in many places in this book that we can use a hash function to create a commitment
to some data and also produce a value that looks like a randomly selected number.

In other places in this book, we’ve used a cryptographically secure hash function that
provides assurances about the strength of its commitment and how indistinguishable
from random its output is. However, there are faster and more configurable non-
cryptographic hash functions, such as the SipHash function we’ll use for compact
block filters.

The details of the algorithm used are described in BIP158, but the gist is that each
output script is reduced to a 64-bit commitment using SipHash and some arithmetic
operations. You can think of this as taking a set of large numbers and truncating them
to shorter numbers, a process that loses data (so it’s called lossy encoding). By losing
some information, we don’t need to store as much information later, which saves
space. In this case, we go from a typical output script that’s 160 bits or longer down to
just 64 bits.
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Using Compact Block Filters
The 64-bit values for every commitment to an output script in a block are sorted,
duplicate entries are removed, and the GCS is constructed by finding the differences
(deltas) between each entry. That compact block filter is then distributed by peers to
their clients (such as wallets).

A client uses the deltas to reconstruct the original commitments. The client, such
as a wallet, also takes all the output scripts it is monitoring for and generates
commitments in the same way as BIP158. It checks whether any of its generated
commitments match the commitments in the filter.

Recall our example of the lossiness of compact block filters being similar to truncat‐
ing a number. Imagine a client is looking for a block that contains the number 123456
and that an accurate (but lossy) compact block filter contains the number 1234.
When a client sees that 1234, it will download the associated block.

There’s a 100% guarantee that an accurate filter containing 1234 will allow a client
to learn about a block containing 123456, called a true positive. However, there’s also
a chance that the block might contain 123400, 123401, or almost a hundred other
entries that are not what the client is looking for (in this example), called a false
positive.

A 100% true positive match rate is great. It means that a wallet can depend on
compact block filters to find every transaction affecting that wallet. A nonzero false
positive rate means that the wallet will end up downloading some blocks that don’t
contain transactions interesting to the wallet. The main consequence of this is that
the client will use extra bandwidth, which is not a huge problem. The actual false
positive rate for BIP158 compact block filters is very low, so it’s not a major problem.
A false positive rate can also help improve a client’s privacy, as it does with bloom
filters, although anyone wanting the best possible privacy should still use their own
full node.

In the long term, some developers advocate for having blocks commit to the filter for
that block, with the most likely scheme having each coinbase transaction commit to
the filter for that block. Full nodes would calculate the filter for each block themselves
and only accept a block if it contained an accurate commitment. That would allow
a lightweight client to download an 80-byte block header, a (usually) small coinbase
transaction, and the filter for that block to receive strong evidence that the filter was
accurate.
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Lightweight Clients and Privacy
Lightweight clients have weaker privacy than a full node. A full node downloads all
transactions and therefore reveals no information about whether it is using some
address in its wallet. A lightweight client only downloads transactions that are related
to its wallet in some way.

Bloom filters and compact block filters are ways to reduce the loss of privacy.
Without them, a lightweight client would have to explicitly list the addresses it was
interested in, creating a serious breach of privacy. However, even with filters, an
adversary monitoring the traffic of a lightweight client or connected to it directly as
a node in the P2P network may be able to collect enough information over time to
learn the addresses in the wallet of the lightweight client.

Encrypted and Authenticated Connections
Most new users of Bitcoin assume that the network communications of a Bitcoin
node are encrypted. In fact, the original implementation of Bitcoin communicates
entirely in the clear, as does the modern implementation of Bitcoin Core at the time
of writing.

As a way to increase the privacy and security of the Bitcoin P2P network, there is a
solution that provides encryption of the communications: Tor transport.

Tor, which stands for The Onion Routing network, is a software project and network
that offers encryption and encapsulation of data through randomized network paths
that offer anonymity, untraceability, and privacy.

Bitcoin Core offers several configuration options that allow you to run a Bitcoin node
with its traffic transported over the Tor network. In addition, Bitcoin Core can also
offer a Tor hidden service allowing other Tor nodes to connect to your node directly
over Tor.

As of Bitcoin Core version 0.12, a node will offer a hidden Tor service automatically
if it is able to connect to a local Tor service. If you have Tor installed and the
Bitcoin Core process runs as a user with adequate permissions to access the Tor
authentication cookie, it should work automatically. Use the debug flag to turn on
Bitcoin Core’s debugging for the Tor service like this:

$ bitcoind --daemon --debug=tor

You should see tor: ADD_ONION successful in the logs, indicating that Bitcoin Core
has added a hidden service to the Tor network.

You can find more instructions on running Bitcoin Core as a Tor hidden service in
the Bitcoin Core documentation (docs/tor.md) and various online tutorials.
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Mempools and Orphan Pools
Almost every node on the Bitcoin network maintains a temporary list of uncon‐
firmed transactions called the memory pool (mempool). Nodes use this pool to keep
track of transactions that are known to the network but are not yet included in the
blockchain, called unconfirmed transactions.

As unconfirmed transactions are received and verified, they are added to the mem‐
pool and relayed to the neighboring nodes to propagate on the network.

Some node implementations also maintain a separate pool of orphaned transactions.
If a transaction’s inputs refer to a transaction that is not yet known, such as a missing
parent, the orphan transaction will be stored temporarily in the orphan pool until the
parent transaction arrives.

When a transaction is added to the mempool, the orphan pool is checked for any
orphans that reference this transaction’s outputs (its children). Any matching orphans
are then validated. If valid, they are removed from the orphan pool and added
to the mempool, completing the chain that started with the parent transaction. In
light of the newly added transaction, which is no longer an orphan, the process is
repeated recursively looking for any further descendants until no more descendants
are found. Through this process, the arrival of a parent transaction triggers a cascade
reconstruction of an entire chain of interdependent transactions by reuniting the
orphans with their parents all the way down the chain.

Some implementations of Bitcoin also maintain a UTXO database, which is the set
of all unspent outputs on the blockchain. This represents a different set of data from
the mempool. Unlike the mempool and orphan pools, the UTXO database contains
millions of entries of unspent transaction outputs, everything that is unspent from
all the way back to the genesis block. The UTXO database is stored as a table on
persistent storage.

Whereas the mempool and orphan pools represent a single node’s local perspective
and might vary significantly from node to node depending on when the node was
started or restarted, the UTXO database represents the emergent consensus of the
network and therefore will not usually vary between nodes.

Now that we have an understanding of many of the data types and structures used
by nodes and clients to send data across the Bitcoin network, it’s time to look at the
software that’s responsible for keeping the network secure and operational.
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CHAPTER 11

The Blockchain

The blockchain is the history of every confirmed Bitcoin transaction. It’s what allows
every full node to independently determine what keys and scripts control which
bitcoins. In this chapter, we’ll look at the structure of the blockchain and see how it
uses cryptographic commitments and other clever tricks to make every part of it easy
for full nodes (and sometimes lightweight clients) to validate.

The blockchain data structure is an ordered, back-linked list of blocks of transactions.
The blockchain can be stored as a flat file or in a simple database. Blocks are linked
“back,” each referring to the previous block in the chain. The blockchain is often
visualized as a vertical stack, with blocks layered on top of each other and the first
block serving as the foundation of the stack. The visualization of blocks stacked on
top of each other results in the use of terms such as “height” to refer to the distance
from the first block, and “top” or “tip” to refer to the most recently added block.

Each block within the blockchain is identified by a hash, generated using the SHA256
cryptographic hash algorithm on the header of the block. Each block also commits
to the previous block, known as the parent block, through the “previous block hash”
field in the block header. The sequence of hashes linking each block to its parent
creates a chain going back all the way to the first block ever created, known as the
genesis block.

Although a block has just one parent, it can have multiple children. Each of the chil‐
dren commits to the same parent block. Multiple children arise during a blockchain
“fork,” a temporary situation that can occur when different blocks are discovered
almost simultaneously by different miners (see “Assembling and Selecting Chains of
Blocks” on page 282). Eventually only one child block becomes part of the blockchain
accepted by all full nodes, and the “fork” is resolved.
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The “previous block hash” field is inside the block header and thereby affects the
current block’s hash. Any change to a parent block requires a child block’s hash to
change, which requires a change in the pointer of the grandchild, which in turn
changes the grandchild, and so on. This sequence ensures that, once a block has
many generations following it, it cannot be changed without forcing a recalculation
of all subsequent blocks. Because such a recalculation would require enormous com‐
putation (and therefore energy consumption), the existence of a long chain of blocks
makes the blockchain’s deep history impractical to change, which is a key feature of
Bitcoin’s security.

One way to think about the blockchain is like layers in a geological formation, or
glacier core sample. The surface layers might change with the seasons, or even be
blown away before they have time to settle. But once you go a few inches deep,
geological layers become more and more stable. By the time you look a few hundred
feet down, you are looking at a snapshot of the past that has remained undisturbed
for millions of years. In the blockchain, the most recent few blocks might be revised
if there is a chain reorganization due to a fork. The top six blocks are like a few
inches of topsoil. But once you go more deeply into the blockchain, beyond six
blocks, blocks are less and less likely to change. After 100 blocks back there is so
much stability that the coinbase transaction—the transaction containing the reward
in bitcoin for creating a new block—can be spent. While the protocol always allows
a chain to be undone by a longer chain and while the possibility of any block being
reversed always exists, the probability of such an event decreases as time passes until
it becomes infinitesimal.

Structure of a Block
A block is a container data structure that aggregates transactions for inclusion in the
blockchain. The block is made of a header, containing metadata, followed by a long
list of transactions that make up the bulk of its size. The block header is 80 bytes,
whereas the total size of all transactions in a block can be up to about 4,000,000 bytes.
A complete block, with all transactions, can therefore be almost 50,000 times larger
than the block header. Table 11-1 describes how Bitcoin Core stores the structure of a
block.

Table 11-1. The structure of a block

Size Field Description
4 bytes Block Size The size of the block, in bytes, following this field

80 bytes Block Header Several fields form the block header

1–3 bytes (compactSize) Transaction Counter How many transactions follow

Variable Transactions The transactions recorded in this block
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Block Header
The block header consists of block metadata as shown in Table 11-2.

Table 11-2. The structure of the block header

Size Field Description
4 bytes Version Originally a version field; its use has evolved over time

32 bytes Previous Block Hash A hash of the previous (parent) block in the chain

32 bytes Merkle Root The root hash of the merkle tree of this block’s transactions

4 bytes Timestamp The approximate creation time of this block (Unix epoch time)

4 bytes Target A compact encoding of the proof-of-work target for this block

4 bytes Nonce Arbitrary data used for the proof-of-work algorithm

The nonce, target, and timestamp are used in the mining process and will be dis‐
cussed in more detail in Chapter 12.

Block Identifiers: Block Header Hash and Block Height
The primary identifier of a block is its cryptographic hash, a commitment
made by hashing the block header twice through the SHA256 algorithm. The
resulting 32-byte hash is called the block hash but is more accurately the block
header hash, because only the block header is used to compute it. For example,
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f is the
block hash of the first block on Bitcoin’s blockchain. The block hash identifies a
block uniquely and unambiguously and can be independently derived by any node by
simply hashing the block header.

Note that the block hash is not actually included inside the block’s data structure.
Instead, the block’s hash is computed by each node as the block is received from the
network. The block hash might be stored in a separate database table as part of the
block’s metadata, to facilitate indexing and faster retrieval of blocks from disk.

A second way to identify a block is by its position in the blockchain, called
the block height. The genesis block is at block height 0 (zero) and is the
same block that was previously referenced by the following block hash
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f. A block
can thus be identified in two ways: by referencing the block hash or by referencing
the block height. Each subsequent block added “on top” of that first block is one posi‐
tion “higher” in the blockchain, like boxes stacked one on top of the other. The block
height 800,000 was reached during the writing of this book in mid-2023, meaning
there were 800,000 blocks stacked on top of the first block created in January 2009.
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Unlike the block hash, the block height is not a unique identifier. Although a single
block will always have a specific and invariant block height, the reverse is not true—
the block height does not always identify a single block. Two or more blocks might
have the same block height, competing for the same position in the blockchain. This
scenario is discussed in detail in the section “Assembling and Selecting Chains of
Blocks” on page 282. In early blocks, the block height was also not a part of the block’s
data structure; it was not stored within the block. Each node dynamically identified
a block’s position (height) in the blockchain when it was received from the Bitcoin
network. A later protocol change (BIP34) began including the block height in the
coinbase transaction, although its purpose was to ensure each block had a different
coinbase transaction. Nodes still need to dynamically identify a block’s height in
order to validate the coinbase field. The block height might also be stored as metadata
in an indexed database table for faster retrieval.

A block’s block hash always identifies a single block uniquely. A
block also always has a specific block height. However, it is not
always the case that a specific block height identifies a single block.
Rather, two or more blocks might compete for a single position in
the blockchain.

The Genesis Block
The first block in the blockchain is called the genesis block and was created in 2009. It
is the common ancestor of all the blocks in the blockchain, meaning that if you start
at any block and follow the chain backward in time, you will eventually arrive at the
genesis block.

Every node always starts with a blockchain of at least one block because the genesis
block is statically encoded within Bitcoin Core, such that it cannot be altered. Every
node always “knows” the genesis block’s hash and structure, the fixed time it was
created, and even the single transaction within. Thus, every node has the starting
point for the blockchain, a secure “root” from which to build a trusted blockchain.

See the statically encoded genesis block inside the Bitcoin Core client in chainpar‐
ams.cpp.

The following identifier hash belongs to the genesis block:

000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

You can search for that block hash in almost any block explorer website, such as
blockstream.info, and you will find a page describing the contents of this block, with a
URL containing that hash:

https://blockstream.info/block/
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
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Alternatively, you can get the block using Bitcoin Core on the command line:

$ bitcoin-cli getblock \
  000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

{
  "hash": "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
  "confirmations": 790496,
  "height": 0,
  "version": 1,
  "versionHex": "00000001",
  "merkleroot": "4a5e1e4baab89f3a32518a88c3[...]76673e2cc77ab2127b7afdeda33b",
  "time": 1231006505,
  "mediantime": 1231006505,
  "nonce": 2083236893,
  "bits": "1d00ffff",
  "difficulty": 1,
  "chainwork": "[...]000000000000000000000000000000000000000000000100010001",
  "nTx": 1,
  "nextblockhash": "00000000839a8e6886ab5951d7[...]fc90947ee320161bbf18eb6048",
  "strippedsize": 285,
  "size": 285,
  "weight": 1140,
  "tx": [
    "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"
  ]
}

The genesis block contains a message within it. The coinbase transaction input
contains the text “The Times 03/Jan/2009 Chancellor on brink of second bailout for
banks.” This message was intended to offer proof of the earliest date this block could
have been created, by referencing the headline of the British newspaper The Times. It
also serves as a tongue-in-cheek reminder of the importance of an independent mon‐
etary system, with Bitcoin’s launch occurring at the same time as an unprecedented
worldwide monetary crisis. The message was embedded in the first block by Satoshi
Nakamoto, Bitcoin’s creator.

Linking Blocks in the Blockchain
Bitcoin full nodes validate every block in the blockchain after the genesis block. Their
local view of the blockchain is constantly updated as new blocks are found and used
to extend the chain. As a node receives incoming blocks from the network, it will
validate these blocks and then link them to its view of the existing blockchain. To
establish a link, a node will examine the incoming block header and look for the
“previous block hash.”
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Let’s assume, for example, that a node has 277,314 blocks in the local copy of the
blockchain. The last block the node knows about is block 277,314, with a block
header hash of:

00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249

The Bitcoin node then receives a new block from the network, which it parses as
follows:

{
    "size" : 43560,
    "version" : 2,
    "previousblockhash" :
        "00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249",
    "merkleroot" :
        "5e049f4030e0ab2debb92378f53c0a6e09548aea083f3ab25e1d94ea1155e29d",
    "time" : 1388185038,
    "difficulty" : 1180923195.25802612,
    "nonce" : 4215469401,
    "tx" : [
        "257e7497fb8bc68421eb2c7b699dbab234831600e7352f0d9e6522c7cf3f6c77",
        "[... many more transactions omitted ...]",
        "05cfd38f6ae6aa83674cc99e4d75a1458c165b7ab84725eda41d018a09176634"
    ]
}

Looking at this new block, the node finds the previousblockhash field, which con‐
tains the hash of its parent block. It is a hash known to the node, that of the last
block on the chain at height 277,314. Therefore, this new block is a child of the last
block on the chain and extends the existing blockchain. The node adds this new
block to the end of the chain, making the blockchain longer with a new height of
277,315. Figure 11-1 shows the chain of three blocks, linked by references in the
previousblockhash field.
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Figure 11-1. Blocks linked in a chain by each referencing the previous block header hash.
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Merkle Trees
Each block in the Bitcoin blockchain contains a summary of all the transactions in
the block using a merkle tree.

A merkle tree, also known as a binary hash tree, is a data structure used for efficiently
summarizing and verifying the integrity of large sets of data. Merkle trees are binary
trees containing cryptographic hashes. The term “tree” is used in computer science to
describe a branching data structure, but these trees are usually displayed upside down
with the “root” at the top and the “leaves” at the bottom of a diagram, as you will see
in the examples that follow.

Merkle trees are used in Bitcoin to summarize all the transactions in a block, produc‐
ing an overall commitment to the entire set of transactions and permitting a very
efficient process to verify whether a transaction is included in a block. A merkle tree
is constructed by recursively hashing pairs of elements until there is only one hash,
called the root, or merkle root. The cryptographic hash algorithm used in Bitcoin’s
merkle trees is SHA256 applied twice, also known as double-SHA256.

When N data elements are hashed and summarized in a merkle tree, you can check
to see if any one data element is included in the tree with about log2(N) calculations,
making this a very efficient data structure.

The merkle tree is constructed bottom-up. In the following example, we start with
four transactions, A, B, C, and D, which form the leaves of the merkle tree, as shown
in Figure 11-2. The transactions are not stored in the merkle tree; rather, their data is
hashed and the resulting hash is stored in each leaf node as HA, HB, HC, and HD:

HA = SHA256(SHA256(Transaction A))

Consecutive pairs of leaf nodes are then summarized in a parent node by concatenat‐
ing the two hashes and hashing them together. For example, to construct the parent
node HAB, the two 32-byte hashes of the children are concatenated to create a 64-byte
string. That string is then double-hashed to produce the parent node’s hash:

HAB = SHA256(SHA256(HA || HB))

The process continues until there is only one node at the top, the node known as the
merkle root. That 32-byte hash is stored in the block header and summarizes all the
data in all four transactions. Figure 11-2 shows how the root is calculated by pair-wise
hashes of the nodes.
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Figure 11-2. Calculating the nodes in a merkle tree.

Because the merkle tree is a binary tree, it needs an even number of leaf nodes. If
there are an odd number of transactions to summarize, the last transaction hash will
be duplicated to create an even number of leaf nodes, also known as a balanced tree.
This is shown in Figure 11-3, where transaction C is duplicated. Similarly, if there are
an odd number of hashes to process at any level, the last hash is duplicated.

Figure 11-3. Duplicating one data element achieves an even number of data elements.
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A Design Flaw in Bitcoin’s Merkle Tree
An extended comment in Bitcoin Core’s source code, reproduced here with slight
revisions, describes a significant problem in the design of Bitcoin’s duplication of odd
elements in its merkle tree:

WARNING! If you’re reading this because you’re learning about crypto and/or
designing a new system that will use merkle trees, keep in mind that the following
merkle tree algorithm has a serious flaw related to duplicate txids, resulting in a
vulnerability (CVE-2012-2459).
The reason is that if the number of hashes in the list at a given level is odd, the last
one is duplicated before computing the next level (which is unusual in merkle trees).
This results in certain sequences of transactions leading to the same merkle root. For
example, the two trees in Figure 11-4:

Figure 11-4. Two Bitcoin-style merkle trees with the same root but a different
number of leaves.

The transaction lists [1,2,3,4,5,6] and [1,2,3,4,5,6,5,6] (where 5 and 6 are repeated)
result in the same root hash A (because the hash of both of (F) and (F,F) is C).
The vulnerability results from being able to send a block with such a transaction
list, with the same merkle root, and the same block hash as the original without
duplication, resulting in failed validation. If the receiving node proceeds to mark
that block as permanently invalid however, it will fail to accept further unmodified
(and thus potentially valid) versions of the same block. We defend against this by
detecting the case where we would hash two identical hashes at the end of the list
together, and treating that identically to the block having an invalid merkle root.
Assuming no double-SHA256 collisions, this will detect all known ways of changing
the transactions without affecting the merkle root.

—Bitcoin Core src/consensus/merkle.cpp
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The same method for constructing a tree from four transactions can be generalized
to construct trees of any size. In Bitcoin it is common to have several thousand trans‐
actions in a single block, which are summarized in exactly the same way, producing
just 32 bytes of data as the single merkle root. In Figure 11-5, you will see a tree built
from 16 transactions. Note that although the root looks bigger than the leaf nodes in
the diagram, it is the exact same size, just 32 bytes. Whether there is one transaction
or ten thousand transactions in the block, the merkle root always summarizes them
into 32 bytes.

To prove that a specific transaction is included in a block, a node only needs to
produce approximately log2(N) 32-byte hashes, constituting an authentication path
or merkle path connecting the specific transaction to the root of the tree. This is
especially important as the number of transactions increases because the base-2
logarithm of the number of transactions increases much more slowly. This allows
Bitcoin nodes to efficiently produce paths of 10 or 12 hashes (320–384 bytes), which
can provide proof of a single transaction out of more than a thousand transactions in
a multimegabyte block.

Figure 11-5. A merkle tree summarizing many data elements.

In Figure 11-6, a node can prove that a transaction K is included in the block by
producing a merkle path that is only four 32-byte hashes long (128 bytes total).
The path consists of the four hashes (shown with a shaded background) HL, HIJ,
HMNOP, and HABCDEFGH. With those four hashes provided as an authentication path,
any node can prove that HK (with a black background at the bottom of the diagram)
is included in the merkle root by computing four additional pair-wise hashes HKL,
HIJKL, HIJKLMNOP, and the merkle tree root (outlined in a dashed line in the diagram).
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Figure 11-6. A merkle path used to prove inclusion of a data element.

The efficiency of merkle trees becomes obvious as the scale increases. The largest
possible block can hold almost 16,000 transactions in 4,000,000 bytes, but proving
any particular one of those 16,000 transactions is a part of that block only requires
a copy of the transaction, a copy of the 80-byte block header, and 448 bytes for the
merkle proof. That makes the largest possible proof almost 10,000 times smaller than
the largest possible Bitcoin block.

Merkle Trees and Lightweight Clients
Merkle trees are used extensively by lightweight clients. Lightweight clients don’t have
all transactions and do not download full blocks, just block headers. In order to
verify that a transaction is included in a block, without having to download all the
transactions in the block, they use a merkle path.

Consider, for example, a lightweight client that is interested in incoming payments
to an address contained in its wallet. The lightweight client will establish a bloom
filter (see “Bloom Filters” on page 231) on its connections to peers to limit the
transactions received to only those containing addresses of interest. When a peer
sees a transaction that matches the bloom filter, it will send that block using a
merkleblock message. The merkleblock message contains the block header as well
as a merkle path that links the transaction of interest to the merkle root in the block.
The lightweight client can use this merkle path to connect the transaction to the
block header and verify that the transaction is included in the block. The lightweight
client also uses the block header to link the block to the rest of the blockchain. The
combination of these two links, between the transaction and block and between the
block and blockchain, proves that the transaction is recorded in the blockchain. All in
all, the lightweight client will have received less than a kilobyte of data for the block
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header and merkle path, an amount of data that is more than a thousand times less
than a full block (about 2 MB currently).

Bitcoin’s Test Blockchains
You might be surprised to learn that there is more than one blockchain used with
Bitcoin. The “main” Bitcoin blockchain, the one created by Satoshi Nakamoto on
January 3rd, 2009, the one with the genesis block we studied in this chapter, is called
mainnet. There are other Bitcoin blockchains that are used for testing purposes: at
this time testnet, signet, and regtest. Let’s look at each in turn.

Testnet: Bitcoin’s Testing Playground
Testnet is the name of the test blockchain, network, and currency that is used for
testing purposes. The testnet is a fully featured live P2P network, with wallets, test
bitcoins (testnet coins), mining, and all the other features of mainnet. The most
important difference is that testnet coins are meant to be worthless.

Any software development that is intended for production use on Bitcoin’s mainnet
can first be tested on testnet with test coins. This protects both the developers from
monetary losses due to bugs and the network from unintended behavior due to bugs.

The current testnet is called testnet3, the third iteration of testnet, restarted in
February 2011 to reset the difficulty from the previous testnet. Testnet3 is a large
blockchain, in excess of 30 GB in 2023. It will take a while to sync fully and use up
resources on your computer. Not as much as mainnet, but not exactly “lightweight”
either.

Testnet and the other test blockchains described in this book don’t
use the same address prefixes as mainnet addresses to prevent
someone from accidentally sending real bitcoins to a test address.
Mainnet addresses begin with 1, 3, or bc1. Addresses for the test
networks mentioned in this book begin with m, n, or tb1. Other test
networks, or new protocols being developed on test networks, may
use other address prefixes or alterations.

Using testnet
Bitcoin Core, like many other Bitcoin programs, has full support for operation on
testnet as an alternative mainnet. All of Bitcoin Core’s functions work on testnet,
including the wallet, mining testnet coins, and syncing a full testnet node.
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To start Bitcoin Core on testnet instead of mainnet you use the testnet switch:

$ bitcoind -testnet

In the logs you should see that bitcoind is building a new blockchain in the testnet3
subdirectory of the default bitcoind directory:

bitcoind: Using data directory /home/username/.bitcoin/testnet3

To connect to bitcoind, you use the bitcoin-cli command-line tool, but you must
also switch it to testnet mode:

$ bitcoin-cli -testnet getblockchaininfo
{
  "chain": "test",
  "blocks": 1088,
  "headers": 139999,
  "bestblockhash": "0000000063d29909d475a1c[...]368e56cce5d925097bf3a2084370128",
  "difficulty": 1,
  "mediantime": 1337966158,
  "verificationprogress": 0.001644065914099759,
  "chainwork": "[...]000000000000000000000000000000000000000000044104410441",
  "pruned": false,
  "softforks": [

  [...]

You can also run on testnet3 with other full-node implementations, such as btcd
(written in Go) and bcoin (written in JavaScript), to experiment and learn in other
programming languages and frameworks.

Testnet3 supports all the features of mainnet, including segregated witness v0 and
v1 (see “Segregated Witness” on page 137 and “Taproot” on page 178). Therefore,
testnet3 can also be used to test segregated witness features.

Problems with testnet
Testnet doesn’t just use the same data structures as Bitcoin, it also uses almost exactly
the same proof-of-work security mechanism as Bitcoin. The notable differences for
testnet are that its minimum difficulty is half that of Bitcoin and that it’s allowed to
include a block at the minimum difficulty if that block’s timestamp is more than 20
minutes after the previous block.

Unfortunately, Bitcoin’s PoW security mechanism was designed to depend on eco‐
nomic incentives—incentives which don’t exist in a test blockchain that is forbidden
from having value. On mainnet, miners are incentivized to include user transactions
in their blocks because those transactions pay fees. On testnet, transactions still
contain something called fees, but those fees don’t have any economic value. That
means the only incentive for a testnet miner to include transactions is because they
want to help users and developers to test their software.
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Alas, people who like to disrupt systems often feel a stronger incentive, at least in the
short term. Because PoW mining is designed to be permissionless, anyone can mine,
whether their intention is good or not. That means disruptive miners can create
many blocks in a row on testnet without including any user transactions. When those
attacks happen, testnet becomes unusable for users and developers.

Signet: The Proof of Authority Testnet
There’s no known way for a system dependent on permissionless PoW to provide a
highly usable blockchain without introducing economic incentives, so Bitcoin proto‐
col developers began considering alternatives. The primary goal was to preserve as
much of the structure of Bitcoin as possible so that software could run on a testnet
with minimal changes—but to also provide an environment that would remain use‐
ful. A secondary goal was to produce a reusable design that would allow developers of
new software to easily create their own test networks.

The solution implemented in Bitcoin Core and other software is called signet, as
defined by BIP325. A signet is a test network where each block must contain proof
(such as a signature) that the creation of that block was sanctioned by a trusted
authority.

Whereas mining in Bitcoin is permissionless—anyone can do it—mining on signet is
fully permissioned. Only those with permission can do it. This would be a completely
unacceptable change to Bitcoin’s mainnet—no one would use that software—but it’s
reasonable on a testnet where coins have no value and the only purpose is testing
software and systems.

BIP325 signets are designed to make it very easy to create your own. If you disagree
with how someone else is running their signet, you can start your own signet and
connect your software to it.

The default signet and custom signets
Bitcoin Core supports a default signet, which we believe to be the most widely
used signet at the time of writing. It is currently operated by two contributors to
that project. If you start Bitcoin Core with the signet parameter and no other
signet-related parameters, this is the signet you will be using.

As of this writing, the default signet has about 150,000 blocks and is about a gigabyte
in size. It supports all of the same features as Bitcoin’s mainnet and is also used
for testing proposed upgrades through the Bitcoin Inquisition project, which is a
software fork of Bitcoin Core that’s only designed to run on signet.

If you want to use a different signet, called a custom signet, you will need to know the
script used to determine when a block is authorized, called the challenge script. This
is a standard Bitcoin script, so it can use features such as multisig to allow multiple
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people to authorize blocks. You may also need to connect to a seed node that will
provide you with the addresses of peers on the custom signet. For example:

bitcoind -signet -signetchallenge=0123...cdef -signetseednode=example.com:1234

As of this writing, we generally recommend that the public testing of mining software
occur on testnet3 and that all other public testing of Bitcoin software occur on the
default signet.

To interact with your chosen signet, you can use the -signet parameter with
bitcoin-cli, similar to how you used testnet. For example:

$ bitcoin-cli -signet getblockchaininfo
{
  "chain": "signet",
  "blocks": 143619,
  "headers": 143619,
  "bestblockhash": "000000c46cb3505ddd296537[...]ad1c5768e2908439382447572a93",
  "difficulty": 0.003020638517858618,
  "time": 1684530244,
  "mediantime": 1684526116,
  "verificationprogress": 0.999997961940662,
  "initialblockdownload": false,
  "chainwork": "[...]000000000000000000000000000000000000000000019ab37d2194",
  "size_on_disk": 769525915,
  "pruned": false,
  "warnings": ""
}

Regtest: The Local Blockchain
Regtest, which stands for “Regression Testing,” is a Bitcoin Core feature that allows
you to create a local blockchain for testing purposes. Unlike signet and testnet3,
which are public and shared test blockchains, the regtest blockchains are intended
to be run as closed systems for local testing. You launch a regtest blockchain from
scratch. You may add other nodes to the network or run it with a single node only to
test the Bitcoin Core software.

To start Bitcoin Core in regtest mode, you use the regtest flag:

$ bitcoind -regtest

Just like with testnet, Bitcoin Core will initialize a new blockchain under the regtest
subdirectory of your bitcoind default directory:

bitcoind: Using data directory /home/username/.bitcoin/regtest
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To use the command-line tool, you need to specify the regtest flag too. Let’s try the
getblockchaininfo command to inspect the regtest blockchain:

$ bitcoin-cli -regtest getblockchaininfo
{
  "chain": "regtest",
  "blocks": 0,
  "headers": 0,
  "bestblockhash": "0f9188f13cb7b2c71f2a335e3[...]b436012afca590b1a11466e2206",
  "difficulty": 4.656542373906925e-10,
  "mediantime": 1296688602,
  "verificationprogress": 1,
  "chainwork": "[...]000000000000000000000000000000000000000000000000000002",
  "pruned": false,
  [...]

As you can see, there are no blocks yet. Let’s create a default wallet, get an address,
and then mine some (500 blocks) to earn the reward:

$ bitcoin-cli -regtest createwallet ""

$ bitcoin-cli -regtest getnewaddress
bcrt1qwvfhw8pf79kw6tvpmtxyxwcfnd2t4e8v6qfv4a

$ bitcoin-cli -regtest generatetoaddress 500 \
  bcrt1qwvfhw8pf79kw6tvpmtxyxwcfnd2t4e8v6qfv4a
[
  "3153518205e4630d2800a4cb65b9d2691ac68eea99afa7fd36289cb266b9c2c0",
  "621330dd5bdabcc03582b0e49993702a8d4c41df60f729cc81d94b6e3a5b1556",
  "32d3d83538ba128be3ba7f9dbb8d1ef03e1b536f65e8701893f70dcc1fe2dbf2",
  ...,
  "32d55180d010ffebabf1c3231e1666e9eeed02c905195f2568c987c2751623c7"
]

It will only take a few seconds to mine all these blocks, which certainly makes it easy
for testing. If you check your wallet balance, you will see that you earned the rewards
for the first 400 blocks (coinbase rewards must be 100 blocks deep before you can
spend them):

$ bitcoin-cli -regtest getbalance
12462.50000000

Using Test Blockchains for Development
Bitcoin’s various blockchains (regtest, signet, testnet3, mainnet) offer a range of
testing environments for bitcoin development. Use the test blockchains whether you
are developing for Bitcoin Core or another full-node consensus client; developing
an application such as a wallet, exchange, ecommerce site; or even developing novel
smart contracts and complex scripts).
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You can use the test blockchains to establish a development pipeline. Test your code
locally on a regtest as you develop it. Once you are ready to try it on a public
network, switch to signet or testnet to expose your code to a more dynamic environ‐
ment with more diversity of code and applications. Finally, once you are confident
your code works as expected, switch to mainnet to deploy it in production. As you
make changes, improvements, bug fixes, etc., start the pipeline again, deploying each
change first on regtest, then on signet or testnet, and finally into production.

Now that we know what data the blockchain contains and how cryptographic com‐
mitments securely tie the various parts together, we will look at the special commit‐
ment that both provide computational security and ensure no block can be changed
without invalidating all other blocks built on top of it: Bitcoin’s mining function.
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CHAPTER 12

Mining and Consensus

The word “mining” is somewhat misleading. By evoking the extraction of precious
metals, it focuses our attention on the reward for mining, the new bitcoins created in
each block. Although mining is incentivized by this reward, the primary purpose of
mining is not the reward or the generation of new bitcoins. If you view mining only
as the process by which bitcoins are created, you are mistaking the means (incentives)
as the goal of the process. Mining is the mechanism that underpins the decentralized
clearinghouse, by which transactions are validated and cleared. Mining is one of the
inventions that makes Bitcoin special, a decentralized consensus mechanism that is
the basis for P2P digital cash.

Mining secures the Bitcoin system and enables the emergence of network-wide consen‐
sus without a central authority. The reward of newly minted bitcoins and transaction
fees is an incentive scheme that aligns the actions of miners with the security of the
network, while simultaneously implementing the monetary supply.

Mining is one of the mechanisms by which Bitcoin’s consensus
security is decentralized.

Miners record new transactions on the global blockchain. A new block, containing
transactions that occurred since the last block, is mined every 10 minutes on average,
thereby adding those transactions to the blockchain. Transactions that become part
of a block and added to the blockchain are considered confirmed, which allows the
new owners of the bitcoins to know that irrevocable effort was expended securing the
bitcoins they received in those transactions.
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Additionally, transactions in the blockchain have a topological order defined by their
position in the blockchain. One transaction is earlier than another if it appears in
an earlier block or if it appears earlier in the same block. In the Bitcoin protocol,
a transaction is only valid if it spends the outputs of transactions that appeared
earlier in the blockchain (whether they are earlier in the same block or in an earlier
block), and only if no previous transaction spent any of those same outputs. Within a
single chain of blocks, the enforcement of topological ordering ensures no two valid
transactions can spend the same output, eliminating the problem of double spending.

In some protocols built on top of Bitcoin, the topological order of Bitcoin transac‐
tions is also used to establish a sequence of events; we’ll discuss that idea further in
“Single-Use Seals” on page 315.

Miners receive two types of rewards in return for the security provided by mining:
new bitcoins created with each new block (called the subsidy), and transaction fees
from all the transactions included in the block. To earn this reward, miners compete
to satisfy a challenge based on a cryptographic hash algorithm. The solution to the
problem, called the proof of work, is included in the new block and acts as proof
that the miner expended significant computing effort. The competition to solve the
proof-of-work algorithm to earn the reward and the right to record transactions on
the blockchain is the basis for Bitcoin’s security model.

Bitcoin’s money supply is created in a process that’s similar to how a central bank
issues new money by printing bank notes. The maximum amount of newly created
bitcoin a miner can add to a block decreases approximately every four years (or
precisely every 210,000 blocks). It started at 50 bitcoins per block in January 2009 and
halved to 25 bitcoins per block in November 2012. It halved again to 12.5 bitcoins
in July 2016, and again to 6.25 in May 2020. Based on this formula, mining rewards
decrease exponentially until approximately the year 2140, when all bitcoins will have
been issued. After 2140, no new bitcoin will be issued.

Bitcoin miners also earn fees from transactions. Every transaction may include a
transaction fee in the form of a surplus of bitcoins between the transaction’s inputs
and outputs. The winning bitcoin miner gets to “keep the change” on the transac‐
tions included in the winning block. Today, the fees usually represent only a small
percentage of a miner’s income, with the vast majority coming from the newly minted
bitcoins. However, as the reward decreases over time and the number of transactions
per block increases, a greater proportion of mining earnings will come from fees.
Gradually, the mining reward will be dominated by transaction fees, which will form
the primary incentive for miners. After 2140, the amount of new bitcoins in each
block drops to zero and mining will be incentivized only by transaction fees.

In this chapter, we will first examine mining as a monetary supply mechanism and
then look at the most important function of mining: the decentralized consensus
mechanism that underpins Bitcoin’s security.
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To understand mining and consensus, we will track Alice’s transaction as it is received
and added to a block by Jing’s mining equipment. Then we will follow the block as it
is mined, added to the blockchain, and accepted by the Bitcoin network through the
process of emergent consensus.

Bitcoin Economics and Currency Creation
Bitcoin are minted during the creation of each block at a fixed and diminishing rate.
Each block, generated on average every 10 minutes, contains entirely new bitcoins,
created from nothing. Every 210,000 blocks, or approximately every four years, the
currency issuance rate is decreased by 50%. For the first four years of operation of the
network, each block contained 50 new bitcoins.

The first halving occurred at block 210,000. The next expected halving after publica‐
tion of this book will occur at block 840,000, which will probably be produced in
April or May of 2024. The rate of new bitcoins decreases exponentially over 32 of
these halvings until block 6,720,000 (mined approximately in year 2137), when it
reaches the minimum currency unit of 1 satoshi. Finally, after 6.93 million blocks,
in approximately 2140, almost 2,099,999,997,690,000 satoshis, or almost 21 million
bitcoin, will have been issued. Thereafter, blocks will contain no new bitcoins, and
miners will be rewarded solely through the transaction fees. Figure 12-1 shows the
total bitcoins in circulation over time, as the issuance of currency decreases.

Figure 12-1. Supply of bitcoin currency over time based on a geometrically decreasing
issuance rate.

The maximum number of bitcoins mined is the upper limit of
possible mining rewards for Bitcoin. In practice, a miner may
intentionally mine a block taking less than the full reward. Such
blocks have already been mined and more may be mined in the
future, resulting in a lower total issuance of the currency.
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In the code in Example 12-1, we calculate the total amount of bitcoin that will be
issued.

Example 12-1. A script for calculating how much total bitcoin will be issued

# Original block reward for miners was 50 BTC
start_block_reward = 50
# 210000 is around every 4 years with a 10 minute block interval
reward_interval = 210000

def max_money():
    # 50 BTC = 50 0000 0000 Satoshis
    current_reward = 50 * 10**8
    total = 0
    while current_reward > 0:
        total += reward_interval * current_reward
        current_reward /= 2
    return total

print("Total BTC to ever be created:", max_money(), "Satoshis")

Example 12-2 shows the output produced by running this script.

Example 12-2. Running the max_money.py script

$ python max_money.py
Total BTC to ever be created: 2099999997690000 Satoshis

The finite and diminishing issuance creates a fixed monetary supply that resists
inflation. Unlike a fiat currency, which can be printed in infinite numbers by a central
bank, no individual party has the ability to inflate the supply of bitcoin.

Deflationary Money
The most important and debated consequence of fixed and diminishing monetary
issuance is that the currency tends to be inherently deflationary. Deflation is the
phenomenon of appreciation of value due to a mismatch in supply and demand that
drives up the value (and exchange rate) of a currency. Price deflation is the opposite
of inflation; it means that the money has more purchasing power over time.

Many economists argue that a deflationary economy is a disaster that should be
avoided at all costs. That is because in a period of rapid deflation, people tend to
hoard money instead of spending it, hoping that prices will fall. Such a phenomenon
unfolded during Japan’s “Lost Decade,” when a complete collapse of demand pushed
the currency into a deflationary spiral.
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Bitcoin experts argue that deflation is not bad per se. Rather, deflation is associated
with a collapse in demand because that is the most obvious example of deflation we
have to study. In a fiat currency with the possibility of unlimited printing, it is very
difficult to enter a deflationary spiral unless there is a complete collapse in demand
and an unwillingness to print money. Deflation in Bitcoin is not caused by a collapse
in demand, but by a predictably constrained supply.

The positive aspect of deflation, of course, is that it is the opposite of inflation.
Inflation causes a slow but inevitable debasement of currency, resulting in a form
of hidden taxation that punishes savers in order to bail out debtors (including the
biggest debtors, governments themselves). Currencies under government control
suffer from the moral hazard of easy debt issuance that can later be erased through
debasement at the expense of savers.

It remains to be seen whether the deflationary aspect of the currency is a problem
when it is not driven by rapid economic retraction, or an advantage because the
protection from inflation and debasement outweighs the risks of deflation.

Decentralized Consensus
In the previous chapter we looked at the blockchain, the global list of all transactions,
which everyone in the Bitcoin network accepts as the authoritative record of owner‐
ship transfers.

But how can everyone in the network agree on a single universal “truth” about who
owns what, without having to trust anyone? All traditional payment systems depend
on a trust model that has a central authority providing a clearinghouse service,
basically verifying and clearing all transactions. Bitcoin has no central authority, yet
somehow every full node has a complete copy of a public blockchain that it can trust
as the authoritative record. The blockchain is not created by a central authority but
is assembled independently by every node in the network. Somehow, every node in
the network, acting on information transmitted across insecure network connections,
can arrive at the same conclusion and assemble a copy of the same blockchain
as everyone else. This chapter examines the process by which the Bitcoin network
achieves global consensus without central authority.

One of Satoshi Nakamoto’s inventions is the decentralized mechanism for emergent
consensus. Emergent because consensus is not achieved explicitly—there is no elec‐
tion or fixed moment when consensus occurs. Instead, consensus is an emergent
artifact of the asynchronous interaction of thousands of independent nodes, all fol‐
lowing simple rules. All the properties of Bitcoin, including currency, transactions,
payments, and the security model that does not depend on central authority or trust,
derive from this invention.
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Bitcoin’s decentralized consensus emerges from the interplay of four processes that
occur independently on nodes across the network:

• Independent verification of each transaction, by every full node, based on a•
comprehensive list of criteria

• Independent aggregation of those transactions into new blocks by mining nodes,•
coupled with demonstrated computation through a proof-of-work algorithm

• Independent verification of the new blocks by every node and assembly into a•
chain

• Independent selection, by every node, of the chain with the most cumulative•
computation demonstrated through proof of work

In the next few sections, we will examine these processes and how they interact to
create the emergent property of network-wide consensus that allows any Bitcoin node
to assemble its own copy of the authoritative, trusted, public, global blockchain.

Independent Verification of Transactions
In Chapter 6, we saw how wallet software creates transactions by collecting UTXOs,
providing the appropriate authentication data, and then constructing new outputs
assigned to a new owner. The resulting transaction is then sent to the neighboring
nodes in the Bitcoin network so that it can be propagated across the entire Bitcoin
network.

However, before forwarding transactions to its neighbors, every Bitcoin node that
receives a transaction will first verify the transaction. This ensures that only valid
transactions are propagated across the network, while invalid transactions are dis‐
carded at the first node that encounters them.

Each node verifies every transaction against a long checklist of criteria:

• The transaction’s syntax and data structure must be correct.•
• Neither lists of inputs nor outputs are empty.•
• The transaction weight is low enough to allow it to fit in a block.•
• Each output value, as well as the total, must be within the allowed range of values•

(zero or more, but not exceeding 21 million bitcoins).
• Lock time is equal to INT_MAX, or lock time and sequence values are satisfied•

according to the lock time and BIP68 rules.
• The number of signature operations (SIGOPS) contained in the transaction is•

less than the signature operation limit.
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• The outputs being spent match outputs in the mempool or unspent outputs in a•
block in the main branch.

• For each input, if the referenced output transaction is a coinbase output, it must•
have at least COINBASE_MATURITY (100) confirmations. Any absolute or relative
lock time must also be satisfied. Nodes may relay transactions a block before they
mature since they will be mature if included in the next block.

• Reject if the sum of input values is less than sum of output values.•
• The scripts for each input must validate against the corresponding output scripts.•

Note that the conditions change over time, to add new features or address new types
of denial-of-service attacks.

By independently verifying each transaction as it is received and before propagating
it, every node builds a pool of valid (but unconfirmed) transactions known as the
memory pool or mempool.

Mining Nodes
Some of the nodes on the Bitcoin network are specialized nodes called miners.
Jing is a Bitcoin miner; he earns bitcoin by running a “mining rig,” which is a
specialized computer-hardware system designed to mine bitcoin. Jing’s specialized
mining hardware is connected to a server running a full node. Like every other full
node, Jing’s node receives and propagates unconfirmed transactions on the Bitcoin
network. Jing’s node, however, also aggregates these transactions into new blocks.

Let’s follow the blocks that were created during the time Alice made a purchase
from Bob (see “Buying from an Online Store” on page 16). For the purpose of
demonstrating the concepts in this chapter, let’s assume the block containing Alice’s
transaction was mined by Jing’s mining system and follow Alice’s transaction as it
becomes part of this new block.

Jing’s mining node maintains a local copy of the blockchain. By the time Alice buys
something, Jing’s node is caught up with the chain of blocks with the most proof of
work. Jing’s node is listening for transactions, trying to mine a new block and also
listening for blocks discovered by other nodes. As Jing’s node is mining, it receives a
new block through the Bitcoin network. The arrival of this block signifies the end of
the search for that block and the beginning of the search to create the next block.

During the previous several minutes, while Jing’s node was searching for a solution
to the previous block, it was also collecting transactions in preparation for the next
block. By now it has collected a few thousand transactions in its memory pool. Upon
receiving the new block and validating it, Jing’s node will also compare it against
all the transactions in the memory pool and remove any that were included in that
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block. Whatever transactions remain in the memory pool are unconfirmed and are
waiting to be recorded in a new block.

Jing’s node immediately constructs a new partial block, a candidate for the next block.
This block is called a candidate block because it is not yet a valid block, as it does not
contain a valid proof-of-work. The block becomes valid only if the miner succeeds in
finding a solution according to the proof-of-work algorithm.

When Jing’s node aggregates all the transactions from the memory pool, the new
candidate block has several thousand transactions that each pay transaction fees he’ll
attempt to claim.

The Coinbase Transaction
The first transaction in any block is a special transaction, called a coinbase transac‐
tion. This transaction is constructed by Jing’s node and pays out his reward for the
mining effort.

Jing’s node creates the coinbase transaction as a payment to his own wallet. The
total amount of reward that Jing collects for mining a block is the sum of the block
subsidy (6.25 new bitcoins in 2023) and the transaction fees from all the transactions
included in the block.

Unlike regular transactions, the coinbase transaction does not consume (spend)
UTXOs as inputs. Instead, it has only one input, called the coinbase input, which
implicitly contains the block reward. The coinbase transaction must have at least
one output and may have as many outputs as will fit in the block. It’s common for
coinbase transactions in 2023 to have two outputs: one of these is a zero-value output
that uses OP_RETURN to commit to all of the witnesses for segregated witness (segwit)
transactions in the block. The other output pays the miner their reward.

Coinbase Reward and Fees
To construct the coinbase transaction, Jing’s node first calculates the total amount of
transaction fees:

Total Fees = Sum Inputs − Sum Outputs

Next, Jing’s node calculates the correct reward for the new block. The reward is
calculated based on the block height, starting at 50 bitcoin per block and reduced by
half every 210,000 blocks.

The calculation can be seen in function GetBlockSubsidy in the Bitcoin Core client,
as shown in Example 12-3.
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Example 12-3. Calculating the block reward—Function GetBlockSubsidy, Bitcoin Core
Client, main.cpp

CAmount GetBlockSubsidy(int nHeight, const Consensus::Params& consensusParams)
{
    int halvings = nHeight / consensusParams.nSubsidyHalvingInterval;
    // Force block reward to zero when right shift is undefined.
    if (halvings >= 64)
        return 0;

    CAmount nSubsidy = 50 * COIN;
    // Subsidy is cut in half every 210,000 blocks.
    nSubsidy >>= halvings;
    return nSubsidy;
}

The initial subsidy is calculated in satoshis by multiplying 50 with the COIN constant
(100,000,000 satoshis). This sets the initial reward (nSubsidy) at 5 billion satoshis.

Next, the function calculates the number of halvings that have occurred by dividing
the current block height by the halving interval (SubsidyHalvingInterval).

Next, the function uses the binary-right-shift operator to divide the reward
(nSubsidy) by two for each round of halving. In the case of block 277,316, this would
binary-right-shift the reward of 5 billion satoshis once (one halving) and result in 2.5
billion satoshis, or 25 bitcoins. After the 33rd halving, the subsidy will be rounded
down to zero. The binary-right-shift operator is used because it is more efficient than
multiple repeated divisions. To avoid a potential bug, the shift operation is skipped
after 63 halvings, and the subsidy is set to 0.

Finally, the coinbase reward (nSubsidy) is added to the transaction fees (nFees), and
the sum is returned.

If Jing’s mining node writes the coinbase transaction, what stops
Jing from “rewarding” himself 100 or 1,000 bitcoin? The answer
is that an inflated reward would result in the block being deemed
invalid by everyone else, wasting Jing’s electricity used for PoW.
Jing only gets to spend the reward if the block is accepted by
everyone.

Structure of the Coinbase Transaction
With these calculations, Jing’s node then constructs the coinbase transaction to pay
himself the block reward.

The coinbase transaction has a special format. Instead of a transaction input specify‐
ing a previous UTXO to spend, it has a “coinbase” input. We examined transaction
inputs in “Inputs” on page 123. Let’s compare a regular transaction input with a
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coinbase transaction input. Table 12-1 shows the structure of a regular transaction,
while Table 12-2 shows the structure of the coinbase transaction’s input.

Table 12-1. The structure of a “normal” transaction input

Size Field Description
32 bytes Transaction Hash Pointer to the transaction containing the UTXO to be spent

4 bytes Output Index The index number of the UTXO to be spent, first one is 0

1–9 bytes (compactSize) Script Size Script length in bytes, to follow

Variable Input Script A script that fulfills the conditions of the UTXO output script

4 bytes Sequence Number Multipurpose field used for BIP68 timelocks and transaction replacement
signaling

Table 12-2. The structure of a coinbase transaction input

Size Field Description
32 bytes Transaction Hash All bits are zero: Not a transaction hash reference

4 bytes Output Index All bits are ones: 0xFFFFFFFF

1 byte Coinbase Data Size Length of the coinbase data, from 2 to 100 bytes

Variable Coinbase Data Arbitrary data used for extra nonce and mining tags; in v2 blocks, must begin with block
height

4 bytes Sequence Number Set to 0xFFFFFFFF

In a coinbase transaction, the first two fields are set to values that do not represent a
UTXO reference. Instead of a “transaction hash,” the first field is filled with 32 bytes
all set to zero. The “output index” is filled with 4 bytes all set to 0xFF (255 decimal).
The input script is replaced by coinbase data, a data field used by the miners, as we
will see next.

Coinbase Data
Coinbase transactions do not have an input script field. Instead, this field is replaced
by coinbase data, which must be between 2 and 100 bytes. Except for the first few
bytes, the rest of the coinbase data can be used by miners in any way they want; it is
arbitrary data.

In the genesis block, for example, Satoshi Nakamoto added the text “The Times
03/Jan/2009 Chancellor on brink of second bailout for banks” in the coinbase data,
using it as a proof of the earliest date this block could have been created and to
convey a message. Currently, miners often use the coinbase data to include extra
nonce values and strings identifying the mining pool.
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The first few bytes of the coinbase used to be arbitrary, but that is no longer the case.
As per BIP34, version-2 blocks (blocks with the version field set to 2 or higher) must
contain the block height as a script “push” operation in the beginning of the coinbase
field.

Constructing the Block Header
To construct the block header, the mining node needs to fill in six fields, as listed in
Table 12-3.

Table 12-3. The structure of the block header

Size Field Description
4 bytes Version A multipurpose bitfield

32 bytes Previous Block Hash A reference to the hash of the previous (parent) block in the chain

32 bytes Merkle Root A hash that is the root of the merkle tree of this block’s transactions

4 bytes Timestamp The approximate creation time of this block (seconds from Unix Epoch)

4 bytes Target The proof-of-work algorithm target for this block

4 bytes Nonce A counter used for the proof-of-work algorithm

The version field was originally an integer field and was used in three upgrades to
the Bitcoin network, those defined in BIPs 34, 66, and 65. Each time, the version
number was incremented. Later upgrades defined the version field as a bitfield, called
versionbits, allowing up to 29 upgrades to be in progress simultaneously; see “BIP9:
Signaling and activation” on page 298 for details. Even later, miners began using some
of the versionbits as an auxiliary nonce field.

The protocol upgrades defined in BIPs 34, 66, and 65 occurred
in that order, with BIP66 (strict DER) occurring before BIP65
(OP_CHECKTIMELOCKVERIFY), so Bitcoin developers often list them
in that order rather than sorted numerically.

Today, the versionbits field has no meaning unless there’s an attempt to upgrade the
consensus protocol underway, in which case you will need to read its documentation
to determine how it is using versionbits.

Next, the mining node needs to add the “Previous Block Hash” (also known as
prevhash). That is the hash of the block header of the previous block received
from the network, which Jing’s node has accepted and selected as the parent of his
candidate block.
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By selecting the specific parent block, indicated by the Previous
Block Hash field in the candidate block header, Jing is committing
his mining power to extending the chain that ends in that specific
block.

The next step is to commit to all the transactions using merkle trees. Each transaction
is listed using its witness transaction identifier (wtxid) in topographical order, with 32
0x00 bytes standing in for the wtxid of the first transaction (the coinbase). As we saw
in the “Merkle Trees” on page 252 the last wtxid is hashed with itself if there are an
odd number of wtxids, creating nodes that each contain the hash of one transaction.
The transaction hashes are then combined, in pairs, creating each level of the tree,
until all the transactions are summarized into one node at the “root” of the tree. The
root of the merkle tree summarizes all the transactions into a single 32-byte value,
which is the witness root hash.

The witness root hash is added to an output of the coinbase transaction. This step
may be skipped if none of the transactions in the block are required to contain a
witness structure. Each transaction (including the coinbase transaction) is then listed
using its transaction identifier (txid) and used to build a second merkle tree, the root
of which becomes the merkle root, to which the block header commits.

Jing’s mining node will then add a 4-byte timestamp, encoded as a Unix “epoch”
timestamp, which is based on the number of seconds elapsed from January 1, 1970,
midnight UTC/GMT.

Jing’s node then fills in the nBits target, which must be set to a compact representa‐
tion of the required PoW to make this a valid block. The target is stored in the block
as a “target bits” metric, which is a mantissa-exponent encoding of the target. The
encoding has a 1-byte exponent, followed by a 3-byte mantissa (coefficient). In block
277,316, for example, the target bits value is 0x1903a30c. The first part 0x19 is a
hexadecimal exponent, while the next part, 0x03a30c, is the coefficient. The concept
of a target is explained in “Retargeting to Adjust Difficulty” on page 278 and the
“target bits” representation is explained in “Target Representation” on page 277.

The final field is the nonce, which is initialized to zero.

With all the other fields filled, the header of the candidate block is now complete and
the process of mining can begin. The goal is now to find a header that results in a
hash that is less than the target. The mining node will need to test billions or trillions
of variations of the header before a version is found that satisfies the requirement.
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Mining the Block
Now that a candidate block has been constructed by Jing’s node, it is time for Jing’s
hardware mining rig to “mine” the block, to find a solution to the proof-of-work
algorithm that makes the block valid. Throughout this book we have studied crypto‐
graphic hash functions as used in various aspects of the Bitcoin system. The hash
function SHA256 is the function used in Bitcoin’s mining process.

In the simplest terms, mining is the process of hashing the candidate block header
repeatedly, changing one parameter, until the resulting hash matches a specific target.
The hash function’s result cannot be determined in advance, nor can a pattern be
created that will produce a specific hash value. This feature of hash functions means
that the only way to produce a hash result matching a specific target is to try again
and again, modifying the input until the desired hash result appears by chance.

Proof-of-Work Algorithm
A hash algorithm takes an arbitrary-length data input and produces a fixed-length
deterministic result, called a digest. The digest is a digital commitment to the input.
For any specific input, the resulting digest will always be the same and can be
easily calculated and verified by anyone implementing the same hash algorithm. A
key characteristic of a cryptographic hash algorithm is that it is computationally
infeasible to find two different inputs that produce the same digest (known as a
collision). As a corollary, it is also virtually impossible to select an input in such a way
as to produce a desired digest, other than trying random inputs.

With SHA256, the output is always 256 bits long, regardless of the size of the input.
For example, we will calculate the SHA256 hash of the phrase, “Hello, World!”:

$ echo "Hello, world!" | sha256sum
d9014c4624844aa5bac314773d6b689ad467fa4e1d1a50a1b8a99d5a95f72ff5  -

This 256-bit output (represented in hex) is the hash or digest of the phrase and
depends on every part of the phrase. Adding a single letter, punctuation mark, or any
other character will produce a different hash.

A variable used in such a scenario is called a nonce. The nonce is used to vary the
output of a cryptographic function, in this case to vary the output of the SHA256
commitment to the phrase.

To make a challenge out of this algorithm, let’s set a target: find a phrase that
produces a hexadecimal hash that starts with a zero. Fortunately, this isn’t difficult, as
shown in Example 12-4.
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Example 12-4. Simple proof-of-work implementation

$ for nonce in $( seq 100 ) ; do echo "Hello, world! $nonce" | sha256sum ; done
3194835d60e85bf7f728f3e3f4e4e1f5c752398cbcc5c45e048e4dbcae6be782  -
bfa474bbe2d9626f578d7d8c3acc1b604ec4a7052b188453565a3c77df41b79e  -
[...]
f75a100821c34c84395403afd1a8135f685ca69ccf4168e61a90e50f47552f61  -
09cb91f8250df04a3db8bd98f47c7cecb712c99835f4123e8ea51460ccbec314  -

The phrase “Hello, World! 32” produces the following hash, which fits our cri‐
teria: 09cb91f8250df04a3db8bd98f47c7cecb712c99835f4123e8ea51460ccbec314. It
took 32 attempts to find it. In terms of probabilities, if the output of the hash
function is evenly distributed, we would expect to find a result with a 0 as the
hexadecimal prefix once every 16 hashes (one out of 16 hexadecimal digits 0
through F). In numerical terms, that means finding a hash value that is less
than 0x1000000000000000000000000000000000000000000000000000000000000000.
We call this threshold the target, and the goal is to find a hash that is numerically
less than the target. If we decrease the target, the task of finding a hash that is less
than the target becomes more and more difficult.

To give a simple analogy, imagine a game where players throw a pair of dice repeatedly,
trying to throw less than a specified target. In the first round, the target is 12. Unless you
throw double-6, you win. In the next round the target is 11. Players must throw 10 or less to
win, again an easy task. Let’s say a few rounds later the target is down to 5. Now, more than
half the dice throws will exceed the target and therefore be invalid. It takes more dice throws
to win the lower the target gets. Eventually, when the target is 3 (the minimum possible),
only one throw out of every 36, or about 3% of them, will produce a winning result.

From the perspective of an observer who knows that the target of the dice game
is 3, if someone has succeeded in casting a winning throw it can be assumed that
they attempted, on average, 36 throws. In other words, one can estimate the amount
of work it takes to succeed from the difficulty imposed by the target. When the
algorithm is based on a deterministic function such as SHA256, the input itself
constitutes proof that a certain amount of work was done to produce a result below
the target. Hence, proof of work.

Even though each attempt produces a random outcome, the prob‐
ability of any possible outcome can be calculated in advance.
Therefore, an outcome of specified difficulty constitutes proof of
a specific amount of work.

In Example 12-4, the winning “nonce” is 32, and this result can be confirmed by
anyone independently. Anyone can add the number 32 as a suffix to the phrase
“Hello, world!” and compute the hash, verifying that it is less than the target:
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$ echo "Hello, world! 32" | sha256sum
09cb91f8250df04a3db8bd98f47c7cecb712c99835f4123e8ea51460ccbec314  -

Although it only takes one hash computation to verify, it took us 32 hash computations
to find a nonce that worked. If we had a lower target (higher difficulty), it would take
many more hash computations to find a suitable nonce, but only one hash computation
for anyone to verify. And by knowing the target, anyone can estimate the difficulty using
statistics and therefore know roughly how much work was needed to find such a nonce.

The PoW must produce a hash that is less than the target. A higher
target means it is less difficult to find a hash that is below the
target. A lower target means it is more difficult to find a hash below
the target. The target and difficulty are inversely related.

Bitcoin’s PoW is very similar to the challenge shown in Example 12-4. The miner con‐
structs a candidate block filled with transactions. Next, the miner calculates the hash of this
block’s header and sees if it is smaller than the current target. If the hash is not less than the
target, the miner will modify the nonce (usually just incrementing it by one) and try again.
At the current difficulty in the Bitcoin network, miners have to try a huge number of times
before finding a nonce that results in a low enough block header hash.

Target Representation
Block headers contain the target in a notation called “target bits” or just “bits,”
which in block 277,316 has the value of 0x1903a30c. This notation expresses the
proof-of-work target as a coefficient/exponent format, with the first two hexadecimal
digits for the exponent and the next six hex digits as the coefficient. In this block,
therefore, the exponent is 0x19 and the coefficient is 0x03a30c.

The formula to calculate the difficulty target from this representation is:

target = coefficient × 2(8 × (exponent – 3))

Using that formula, and the difficulty bits value 0x1903a30c, we get:

target = 0x03a30c × 20x08 × (0x19 – 0x03)

which is:

22,829,202,948,393,929,850,749,706,076,701,368,331,072,452,018,388,575,715,328

Or, in hexadecimal:

0x0000000000000003A30C00000000000000000000000000000000000000000000
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This means that a valid block for height 277,316 is one that has a block header hash
less than the target. In binary that number must have more than 60 leading bits set
to zero. With this level of difficulty, a single miner processing 1 trillion hashes per
second (1 terahash per second or 1 TH/sec) would only find a solution once every
8,496 blocks or once every 59 days, on average.

Retargeting to Adjust Difficulty
As we saw, the target determines the difficulty and therefore affects how long it
takes to find a solution to the proof-of-work algorithm. This leads to the obvious
questions: Why is the difficulty adjustable, who adjusts it, and how?

Bitcoin’s blocks are generated every 10 minutes, on average. This is Bitcoin’s heartbeat
and underpins the frequency of currency issuance and the speed of transaction
settlement. It has to remain constant not just over the short term, but over a period
of many decades. Over this time, it is expected that computer power will continue to
increase at a rapid pace. Furthermore, the number of participants in mining and the
computers they use will also constantly change. To keep the block generation time at
10 minutes, the difficulty of mining must be adjusted to account for these changes.
In fact, the proof-of-work target is a dynamic parameter that is periodically adjusted
to meet a 10-minute block interval goal. In simple terms, the target is set so that the
current mining power will result in a 10-minute block interval.

How, then, is such an adjustment made in a completely decentralized network? Retar‐
geting occurs automatically and on every node independently. Every 2,016 blocks, all
nodes retarget the PoW. The ratio between the actual time span and desired time span
of 10 minutes per block is calculated and a proportionate adjustment (up or down) is
made to the target. In simple terms: If the network is finding blocks faster than every
10 minutes, the difficulty increases (target decreases). If block discovery is slower
than expected, the difficulty decreases (target increases).

The equation can be summarized as:

New Target = Old Target * (20,160 minutes / Actual Time of Last 2015 Blocks)

While the target calibration happens every 2,016 blocks, because
of an off-by-one error in the original Bitcoin software, it is based
on the total time of the previous 2,015 blocks (not 2,016 as it
should be), resulting in a retargeting bias toward higher difficulty
by 0.05%.

Example 12-5 shows the code used in the Bitcoin Core client.
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Example 12-5. Retargeting the proof of work: CalculateNextWorkRequired() in
pow.cpp

   // Limit adjustment step
    int64_t nActualTimespan = pindexLast->GetBlockTime() - nFirstBlockTime;
    LogPrintf("  nActualTimespan = %d  before bounds\n", nActualTimespan);
    if (nActualTimespan < params.nPowTargetTimespan/4)
        nActualTimespan = params.nPowTargetTimespan/4;
    if (nActualTimespan > params.nPowTargetTimespan*4)
        nActualTimespan = params.nPowTargetTimespan*4;

    // Retarget
    const arith_uint256 bnPowLimit = UintToArith256(params.powLimit);
    arith_uint256 bnNew;
    arith_uint256 bnOld;
    bnNew.SetCompact(pindexLast->nBits);
    bnOld = bnNew;
    bnNew *= nActualTimespan;
    bnNew /= params.nPowTargetTimespan;

    if (bnNew > bnPowLimit)
        bnNew = bnPowLimit;

The parameters Interval (2,016 blocks) and TargetTimespan (two weeks as
1,209,600 seconds) are defined in chainparams.cpp.

To avoid extreme volatility in the difficulty, the retargeting adjustment must be less
than a factor of four (4) per cycle. If the required target adjustment is greater than
a factor of four, it will be adjusted by a factor of 4 and not more. Any further
adjustment will be accomplished in the next retargeting period because the imbalance
will persist through the next 2,016 blocks. Therefore, large discrepancies between
hashing power and difficulty might take several 2,016-block cycles to balance out.

Note that the target is independent of the number of transactions or the value of
transactions. This means that the amount of hashing power and therefore electricity
expended to secure bitcoin is also entirely independent of the number of transactions.
Bitcoin can scale up and remain secure without any increase in hashing power from
today’s level. The increase in hashing power represents market forces as new miners
enter the market. As long as enough hashing power is under the control of miners
acting honestly in pursuit of the reward, it is enough to prevent “takeover” attacks
and, therefore, it is enough to secure bitcoin.

The difficulty of mining is closely related to the cost of electricity and the exchange
rate of bitcoin vis-a-vis the currency used to pay for electricity. High-performance
mining systems are about as efficient as possible with the current generation of
silicon fabrication, converting electricity into hashing computation at the highest rate
possible. The primary influence on the mining market is the price of one kilowatt-
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hour of electricity in bitcoin because that determines the profitability of mining and
therefore the incentives to enter or exit the mining market.

Median Time Past (MTP)
In Bitcoin there is a subtle, but very significant, difference between wall time and
consensus time. Bitcoin is a decentralized network, which means that each partici‐
pant has his or her own perspective of time. Events on the network do not occur
instantaneously everywhere. Network latency must be factored into the perspective
of each node. Eventually everything is synchronized to create a common blockchain.
Bitcoin reaches consensus every 10 minutes about the state of the blockchain as it
existed in the past.

The timestamps set in block headers are set by the miners. There is a certain degree
of latitude allowed by the consensus rules to account for differences in clock accuracy
between decentralized nodes. However, this creates an unfortunate incentive for miners
to lie about the time in a block. For example, if a miner sets their time in the future,
they can lower difficulty, allowing them to mine more blocks and claim some of the
block subsidy reserved for future miners. If they can set their times in the past for some
blocks, they can use the current time for some other blocks, and so again make it look
like there’s a long time between blocks for the purpose of manipulating difficulty.

To prevent manipulation, Bitcoin has two consensus rules. The first is that no node
will accept any block with a time further in the future than two hours. The second is
that no node will accept a block with a time less than or equal to the median time of
the last 11 blocks, called median time past (MTP).

As part of the activation of BIP68 relative timelocks, there was also a change in the
way “time” is calculated for timelocks (both absolute and relative) in transactions.
Previously, a miner could include any transaction in a block with a timelock equal
to or below the time of the block. That incentivized miners to use the latest time
they thought was possible (close to two hours in the future) so that more transactions
would be eligible for their block.

To remove the incentive to lie and strengthen the security of timelocks, BIP113 was
proposed and activated at the same time as the BIPs for relative timelocks. The MTP
became the consensus time used for all timelock calculations. By taking the midpoint
from approximately two hours in the past, the influence of any one block’s timestamp
is reduced. By incorporating 11 blocks, no single miner can influence the timestamps
in order to gain fees from transactions with a timelock that hasn’t yet matured.

MTP changes the implementation of time calculations for lock time, CLTV, sequence,
and CSV. The consensus time calculated by MTP is usually about one hour behind
wall clock time. If you create timelock transactions, you should account for it when
estimating the desired value to encode in lock time, sequence, CLTV, and CSV.
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Successfully Mining the Block
As we saw earlier, Jing’s node has constructed a candidate block and prepared it for
mining. Jing has several hardware mining rigs with application-specific integrated cir‐
cuits, where hundreds of thousands of integrated circuits run Bitcoin’s double SHA256
algorithm in parallel at incredible speeds. Many of these specialized machines are
connected to his mining node over USB or a local area network. Next, the mining
node running on Jing’s desktop transmits the block header to his mining hardware,
which starts testing trillions of variations of the header per second. Because the nonce
is only 32 bits, after exhausting all the nonce possibilities (about 4 billion), the mining
hardware changes the block header (adjusting the coinbase extra nonce space, version‐
bits, or timestamp) and resets the nonce counter, testing new combinations.

Almost 11 minutes after starting to mine a particular block, one of the hardware
mining machines finds a solution and sends it back to the mining node.

Immediately, Jing’s mining node transmits the block to all its peers. They receive,
validate, and then propagate the new block. As the block ripples out across the
network, each node adds it to its own copy of the blockchain, extending it to a new
height. As mining nodes receive and validate the block, they abandon their efforts to
find a block at the same height and immediately start computing the next block in the
chain, using Jing’s block as the “parent.” By building on top of Jing’s newly discovered
block, the other miners are essentially using their mining power to endorse Jing’s
block and the chain it extends.

In the next section, we’ll look at the process each node uses to validate a block
and select the most-work chain, creating the consensus that forms the decentralized
blockchain.

Validating a New Block
The third step in Bitcoin’s consensus mechanism is independent validation of each
new block by every node on the network. As the newly solved block moves across the
network, each node performs a series of tests to validate it. The independent valida‐
tion also ensures that only blocks that follow the consensus rules are incorporated in
the blockchain, thus earning their miners the reward. Blocks that violate the rules are
rejected and not only lose their miners the reward, but also waste the effort expended
to find a proof-of-work solution, thus incurring upon those miners all of the costs of
creating a block but giving them none of the rewards.

When a node receives a new block, it will validate the block by checking it against
a long list of criteria that must all be met; otherwise, the block is rejected. These
criteria can be seen in the Bitcoin Core client in the functions CheckBlock and
CheckBlockHeader and include:

Validating a New Block | 281



• The block data structure is syntactically valid.•
• The block header hash is less than the target (enforces the proof of work).•
• The block timestamp is between the MTP and two hours in the future (allowing•

for time errors).
• The block weight is within acceptable limits.•
• The first transaction (and only the first) is a coinbase transaction.•
• All transactions within the block are valid using the transaction checklist dis‐•

cussed in “Independent Verification of Transactions” on page 268.

The independent validation of each new block by every node on the network ensures
that the miners cannot cheat. In previous sections we saw how miners get to write
a transaction that awards them the new bitcoin created within the block and claim
the transaction fees. Why don’t miners write themselves a transaction for a thousand
bitcoins instead of the correct reward? Because every node validates blocks according
to the same rules. An invalid coinbase transaction would make the entire block
invalid, which would result in the block being rejected and, therefore, that transaction
would never become part of the blockchain. The miners have to construct a block,
based on the shared rules that all nodes follow, and mine it with a correct solution
to the PoW. To do so, they expend a lot of electricity in mining, and if they cheat,
all the electricity and effort is wasted. This is why independent validation is a key
component of decentralized consensus.

Assembling and Selecting Chains of Blocks
The final part in Bitcoin’s decentralized consensus mechanism is the assembly of
blocks into chains and the selection of the chain with the most proof of work.

A best blockchain is whichever valid chain of blocks has the most cumulative PoW
associated with it. The best chain may also have branches with blocks that are
“siblings” to the blocks on the best chain. These blocks are valid but not part of the
best chain. They are kept for future reference in case one of those secondary chains
later becomes primary. When sibling blocks occur, they’re usually the result of an
almost simultaneous mining of different blocks at the same height.

When a new block is received, a node will try to add it onto the existing blockchain.
The node will look at the block’s “previous block hash” field, which is the reference
to the block’s parent. Then, the node will attempt to find that parent in the existing
blockchain. Most of the time, the parent will be the “tip” of the best chain, meaning
this new block extends the best chain.

Sometimes the new block does not extend the best chain. In that case, the node will
attach the new block’s header to a secondary chain and then compare the work of
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the secondary chain to the previous best chain. If the secondary chain is now the
best chain, the node will accordingly reorganize its view of confirmed transactions
and available UTXOs. If the node is a miner, it will now construct a candidate block
extending this new, more-proof-of-work, chain.

By selecting the greatest-cumulative-work valid chain, all nodes eventually achieve
network-wide consensus. Temporary discrepancies between chains are resolved even‐
tually as more work is added, extending one of the possible chains.

The blockchain forks described in this section occur naturally as
a result of transmission delays in the global network. We will also
look at deliberately induced forks later in this chapter.

Forks are almost always resolved within one block. It is possible for an accidental fork
to extend to two blocks if both blocks are found almost simultaneously by miners on
opposite “sides” of a previous fork. However, the chance of that happening is low.

Bitcoin’s block interval of 10 minutes is a design compromise between fast confirma‐
tion times and the probability of a fork. A faster block time would make transactions
seem to clear faster but lead to more frequent blockchain forks, whereas a slower
block time would decrease the number of forks but make settlement seem slower.

Which is more secure: a transaction included in one block where
the average time between blocks is 10 minutes, or a transaction
included in a block with nine blocks built on top of it where the
average time between blocks is one minute? The answer is that
they’re equally secure. A malicious miner wanting to double spend
that transaction would need to do an amount of work equal to 10
minutes of the total network hash rate in order to create a chain
with equal proof of work.
Shorter times between blocks doesn’t result in earlier settlement.
Its only advantage is providing weaker guarantees to people who
are willing to accept those guarantees. For example, if you’re will‐
ing to accept three minutes of miners agreeing on the best block‐
chain as sufficient security, you’d prefer a system with 1-minute
blocks, where you could wait for three blocks, over a system with
10-minute blocks. The shorter the time between blocks, the more
miner work is wasted on accidental forks (in addition to other
problems), so many people prefer Bitcoin’s 10-minute blocks over
shorter block intervals.
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Mining and the Hash Lottery
Bitcoin mining is an extremely competitive industry. The hashing power has
increased exponentially every year of Bitcoin’s existence. Some years the growth has
reflected a complete change of technology, such as in 2010 and 2011 when many
miners switched from using CPU mining to GPU mining and field programmable
gate array (FPGA) mining. In 2013 the introduction of ASIC mining led to another
giant leap in mining power, by placing the double-SHA256 function directly on
silicon chips specialized for the purpose of mining. The first such chips could deliver
more mining power in a single box than the entire Bitcoin network in 2010.

At the time of writing, it is believed that there are no more giant leaps left in Bitcoin
mining equipment because the industry has reached the forefront of Moore’s Law,
which stipulates that computing density will double approximately every 18 months.
Still, the mining power of the network continues to advance at a rapid pace.

The Extra Nonce Solution
Since 2012, mining has evolved to resolve a fundamental limitation in the structure
of the block header. In the early days of Bitcoin, a miner could find a block by
iterating through the nonce until the resulting hash was below the target. As difficulty
increased, miners often cycled through all 4 billion values of the nonce without
finding a block. However, this was easily resolved by updating the block timestamp
to account for the elapsed time. Because the timestamp is part of the header, the
change would allow miners to iterate through the values of the nonce again with
different results. Once mining hardware exceeded 4 GH/sec, however, this approach
became increasingly difficult because the nonce values were exhausted in less than
a second. As ASIC mining equipment started exceeding the TH/sec hash rate, the
mining software needed more space for nonce values in order to find valid blocks.
The timestamp could be stretched a bit, but moving it too far into the future would
cause the block to become invalid. A new source of variation was needed in the block
header.

One solution that was widely implemented was to use the coinbase transaction as a
source of extra nonce values. Because the coinbase script can store between 2 and
100 bytes of data, miners started using that space as extra nonce space, allowing
them to explore a much larger range of block header values to find valid blocks. The
coinbase transaction is included in the merkle tree, which means that any change in
the coinbase script causes the merkle root to change. Eight bytes of extra nonce, plus
the 4 bytes of “standard” nonce, allow miners to explore a total 296 (8 followed by 28
zeros) possibilities per second without having to modify the timestamp.

Another solution widely used today is to use up to 16 bits of the block header ver‐
sionbits field for mining, as described in BIP320. If each piece of mining equipment
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has its own coinbase transaction, this allows an individual piece of mining equipment
to perform up to 281 TH/s by only making changes to the block header. This keeps
mining equipment and protocols simpler than incrementing the extra nonce in the
coinbase transaction every 4 billion hashes, which requires recalculating the entire
left flank of the merkle tree up to the root.

Mining Pools
In this highly competitive environment, individual miners working alone (also
known as solo miners) don’t stand a chance. The likelihood of them finding a block
to offset their electricity and hardware costs is so low that it represents a gamble,
like playing the lottery. Even the fastest consumer ASIC mining system cannot keep
up with commercial operations that stack tens of thousands of these systems in
giant warehouses near powerstations. Many miners now collaborate to form mining
pools, pooling their hashing power and sharing the reward among thousands of
participants. By participating in a pool, miners get a smaller share of the overall
reward, but typically get rewarded every day, reducing uncertainty.

Let’s look at a specific example. Assume a miner has purchased mining hardware
with a combined hashing rate of 0.0001% of current the total network hash rate. If
the protocol difficulty never changes, that miner will find a new block approximately
once every 20 years. That’s a potentially long time to wait to get paid. However, if
that miner works together in a mining pool with other miners whose aggregate hash
rate is 1% of the total network hash rate, they’ll average more than one block per day.
That miner will only receive their portion of the rewards (minus any fees charged by
the pool), so they’ll only receive a small amount per day. If they mined every day for
20 years, they’d earn the same amount (not counting pool fees) as if they found an
average block on their own. The only fundamental difference is the frequency of the
payments they receive.

Mining pools coordinate many hundreds or thousands of miners over specialized
pool-mining protocols. The individual miners configure their mining equipment
to connect to a pool server, after creating an account with the pool. Their mining
hardware remains connected to the pool server while mining, synchronizing their
efforts with the other miners. Thus, the pool miners share the effort to mine a block
and then share in the rewards.

Successful blocks pay the reward to a pool Bitcoin address rather than to individual
miners. The pool server will periodically make payments to the miners’ Bitcoin
addresses once their share of the rewards has reached a certain threshold. Typically,
the pool server charges a percentage fee of the rewards for providing the pool-mining
service.

Miners participating in a pool split the work of searching for a solution to a candidate
block, earning “shares” for their mining contribution. The mining pool sets a higher
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target (lower difficulty) for earning a share, typically more than 1,000 times easier
than the Bitcoin network’s target. When someone in the pool successfully mines a
block, the reward is earned by the pool and then shared with all miners in proportion
to the number of shares they contributed to the effort.

Many pools are open to any miner, big or small, professional or amateur. A pool will
therefore have some participants with a single small mining machine, and others with
a garage full of high-end mining hardware. Some will be mining with a few tens of
a kilowatt of electricity, others will be running a data center consuming megawatts
of power. How does a mining pool measure the individual contributions, so as to
fairly distribute the rewards, without the possibility of cheating? The answer is to
use Bitcoin’s proof-of-work algorithm to measure each pool miner’s contribution, but
set at a lower difficulty so that even the smallest pool miners win a share frequently
enough to make it worthwhile to contribute to the pool. By setting a lower difficulty
for earning shares, the pool measures the amount of work done by each miner. Each
time a pool miner finds a block header hash that is less than the pool target, they
prove they have done the hashing work to find that result. That header ultimately
commits to the coinbase transaction and can be used to prove the miner used a
coinbase transaction that would have paid the block reward to the pool. Each pool
miner is given a slightly different coinbase transaction template so each of them
hashes different candidate block headers, preventing duplication of effort.

The work to find shares contributes, in a statistically measurable way, to the overall
effort to find a hash lower than the Bitcoin network’s target. Thousands of miners
trying to find low-value hashes will eventually find one low enough to satisfy the
Bitcoin network target.

Let’s return to the analogy of a dice game. If the dice players are throwing dice with
a goal of throwing less than four (the overall network difficulty), a pool would set
an easier target, counting how many times the pool players managed to throw less
than eight. When pool players throw less than eight (the pool share target), they earn
shares, but they don’t win the game because they don’t achieve the game target (less
than four). The pool players will achieve the easier pool target much more often,
earning them shares very regularly, even when they don’t achieve the harder target
of winning the game. Every now and then, one of the pool players will throw a
combined dice throw of less than four and the pool wins. Then, the earnings can
be distributed to the pool players based on the shares they earned. Even though the
target of eight-or-less wasn’t winning, it was a fair way to measure dice throws for the
players, and it occasionally produces a less-than-four throw.

Similarly, a mining pool will set a (higher and easier) pool target that will ensure that
an individual pool miner frequently earns shares by finding block header hashes that
are less than the pool target. Every now and then, one of these attempts will produce
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a block header hash that is less than the Bitcoin network target, making it a valid
block and the whole pool wins.

Managed pools
Most mining pools are “managed,” meaning that there is a company or individual
running a pool server. The owner of the pool server is called the pool operator, and
they charge pool miners a percentage fee of the earnings.

The pool server runs specialized software and a pool-mining protocol that coordinate
the activities of the pool miners. The pool server is also connected to one or more
full Bitcoin nodes. This allows the pool server to validate blocks and transactions on
behalf of the pool miners, relieving them of the burden of running a full node. For
some miners, the ability to mine without running a full node is another benefit of
joining a managed pool.

Pool miners connect to the pool server using a mining protocol such as Stratum
(either version 1 or version 2). Stratum v1 creates block templates that contain a
template of a candidate block header. The pool server constructs a candidate block
by aggregating transactions, adding a coinbase transaction (with extra nonce space),
calculating the merkle root, and linking to the previous block hash. The header of
the candidate block is then sent to each of the pool miners as a template. Each pool
miner then mines using the block template, at a higher (easier) target than the Bitcoin
network target, and sends any successful results back to the pool server to earn
shares.

Stratum v2 optionally allows individual miners in the pool to choose which transac‐
tions appear in their own blocks, which they can select using their own full node.

Peer-to-peer mining pool (P2Pool)
Managed pools using Stratum v1 create the possibility of cheating by the pool opera‐
tor, who might direct the pool effort to double-spend transactions or invalidate blocks
(see “Hashrate Attacks” on page 288). Furthermore, centralized pool servers represent
a single point of failure. If the pool server is down or is slowed by a denial-of-service
attack, the pool miners cannot mine. In 2011, to resolve these issues of centralization,
a new pool mining method was proposed and implemented: P2Pool, a peer-to-peer
mining pool without a central operator.

P2Pool works by decentralizing the functions of the pool server, implementing a
parallel blockchain-like system called a share chain. A share chain is a blockchain
running at a lower difficulty than the Bitcoin blockchain. The share chain allows
pool miners to collaborate in a decentralized pool by mining shares on the share
chain at a rate of one share block every 30 seconds. Each of the blocks on the share
chain records a proportionate share reward for the pool miners who contribute work,
carrying the shares forward from the previous share block. When one of the share
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blocks also achieves the Bitcoin network target, it is propagated and included on the
Bitcoin blockchain, rewarding all the pool miners who contributed to all the shares
that preceded the winning share block. Essentially, instead of a pool server keeping
track of pool miner shares and rewards, the share chain allows all pool miners to
keep track of all shares using a decentralized consensus mechanism like Bitcoin’s
blockchain consensus mechanism.

P2Pool mining is more complex than pool mining because it requires that the pool
miners run a dedicated computer with enough disk space, memory, and internet
bandwidth to support a Bitcoin full node and the P2Pool node software. P2Pool
miners connect their mining hardware to their local P2Pool node, which simulates
the functions of a pool server by sending block templates to the mining hardware.
On P2Pool, individual pool miners construct their own candidate blocks, aggregating
transactions much like solo miners, but then mine collaboratively on the share chain.
P2Pool is a hybrid approach that has the advantage of much more granular payouts
than solo mining, but without giving too much control to a pool operator like
managed pools.

Even though P2Pool reduces the concentration of power by mining pool operators,
it is conceivably vulnerable to 51% attacks against the share chain itself. A much
broader adoption of P2Pool does not solve the 51% attack problem for Bitcoin itself.
Rather, P2Pool makes Bitcoin more robust overall, as part of a diversified mining
ecosystem. As of this writing, P2Pool has fallen into disuse, but new protocols such
as Stratum v2 can allow individual miners to choose the transactions they include in
their blocks.

Hashrate Attacks
Bitcoin’s consensus mechanism is, at least theoretically, vulnerable to attack by min‐
ers (or pools) that attempt to use their hashing power to dishonest or destructive
ends. As we saw, the consensus mechanism depends on having a majority of the
miners acting honestly out of self-interest. However, if a miner or group of miners
can achieve a significant share of the mining power, they can attack the consensus
mechanism so as to disrupt the security and availability of the Bitcoin network.

It is important to note that hashrate attacks have the greatest effect on future con‐
sensus. Confirmed transactions on the best blockchain become more and more
immutable as time passes. While in theory, a fork can be achieved at any depth, in
practice, the computing power needed to force a very deep fork is immense, making
old blocks very hard to change. Hashrate attacks also do not affect the security of the
private keys and signing algorithms.

One attack scenario against the consensus mechanism is called the majority attack
or 51% attack. In this scenario a group of miners, controlling a majority of the total
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network’s hashing power (such as 51%), collude to attack Bitcoin. With the ability
to mine the majority of the blocks, the attacking miners can cause deliberate “forks”
in the blockchain and double-spend transactions or execute denial-of-service attacks
against specific transactions or addresses. A fork/double-spend attack is where the
attacker causes previously confirmed blocks to be invalidated by forking below them
and reconverging on an alternate chain. With sufficient power, an attacker can
invalidate six or more blocks in a row, causing transactions that were considered
immutable (six confirmations) to be invalidated. Note that a double-spend can only
be done on the attacker’s own transactions, for which the attacker can produce a valid
signature. Double-spending one’s own transactions can be profitable if invalidating
a transaction allows the attacker to get an irreversible exchange payment or product
without paying for it.

Let’s examine a practical example of a 51% attack. In the first chapter, we looked at
a transaction between Alice and Bob. Bob, the seller, is willing to accept payment
without waiting for confirmation (mining in a block) because the risk of a double-
spend on a small item is low in comparison to the convenience of rapid customer
service. This is similar to the practice of coffee shops that accept credit card payments
without a signature for amounts below $25, because the risk of a credit-card charge‐
back is low while the cost of delaying the transaction to obtain a signature is compar‐
atively larger. In contrast, selling a more expensive item for bitcoins runs the risk of a
double-spend attack, where the buyer broadcasts a competing transaction that spends
one of the same inputs (UTXOs) and cancels the payment to the merchant. A 51%
attack allows attackers to double-spend their own transactions in the new chain, thus
undoing the corresponding transaction in the old chain.

In our example, malicious attacker Mallory goes to Carol’s gallery and purchases
a set of beautiful paintings depicting Satoshi Nakamoto as Prometheus. Carol sells
the paintings for $250,000 in bitcoins to Mallory. Instead of waiting for six or more
confirmations on the transaction, Carol wraps and hands the paintings to Mallory
after only one confirmation. Mallory works with an accomplice, Paul, who operates
a large mining pool, and the accomplice launches an attack as soon as Mallory’s
transaction is included in a block. Paul directs the mining pool to remine the same
block height as the block containing Mallory’s transaction, replacing Mallory’s pay‐
ment to Carol with a transaction that double-spends the same input as Mallory’s
payment. The double-spend transaction consumes the same UTXO and pays it back
to Mallory’s wallet instead of paying it to Carol, essentially allowing Mallory to keep
the bitcoins. Paul then directs the mining pool to mine an additional block, so as
to make the chain containing the double-spend transaction longer than the original
chain (causing a fork below the block containing Mallory’s transaction). When the
blockchain fork resolves in favor of the new (longer) chain, the double-spent transac‐
tion replaces the original payment to Carol. Carol is now missing the three paintings
and also has no payment. Throughout all this activity, Paul’s mining pool participants
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might remain blissfully unaware of the double-spend attempt because they mine with
automated miners and cannot monitor every transaction or block.

To protect against this kind of attack, a merchant selling large-value items must wait
at least six confirmations before giving the product to the buyer. Waiting for more
than six confirmations may sometimes be warranted. Alternatively, the merchant
should use an escrow multisignature account, again waiting for several confirmations
after the escrow account is funded. The more confirmations elapse, the harder it
becomes to invalidate a transaction by reorganizing the blockchain. For high-value
items, payment by bitcoin will still be convenient and efficient even if the buyer
has to wait 24 hours for delivery, which would correspond to approximately 144
confirmations.

In addition to a double-spend attack, the other scenario for a consensus attack is
to deny service to specific participants (specific Bitcoin addresses). An attacker with
a majority of the mining power can censor transactions. If they are included in a
block mined by another miner, the attacker can deliberately fork and remine that
block, again excluding the specific transactions. This type of attack can result in a
sustained denial-of-service against a specific address or set of addresses for as long as
the attacker controls the majority of the mining power.

Despite its name, the 51% attack scenario doesn’t actually require 51% of the hashing
power. In fact, such an attack can be attempted with a smaller percentage of the
hashing power. The 51% threshold is simply the level at which such an attack is
almost guaranteed to succeed. A hashrate attack is essentially a tug-of-war for the
next block, and the “stronger” group is more likely to win. With less hashing power,
the probability of success is reduced because other miners control the generation of
some blocks with their “honest” mining power. One way to look at it is that the more
hashing power an attacker has, the longer the fork he can deliberately create, the
more blocks in the recent past he can invalidate, or the more blocks in the future
he can control. Security research groups have used statistical modeling to claim that
various types of hashrate attacks are possible with as little as 30% of the hashing
power.

The centralization of control caused by mining pools has introduced the risk of
for-profit attacks by a mining pool operator. The pool operator in a managed pool
controls the construction of candidate blocks and also controls which transactions
are included. This gives the pool operator the power to exclude transactions or
introduce double-spend transactions. If such abuse of power is done in a limited and
subtle way, a pool operator could conceivably profit from a hashrate attack without
being noticed.

Not all attackers will be motivated by profit, however. One potential attack scenario
is where an attacker intends to disrupt the Bitcoin network without the possibility of
profiting from such disruption. A malicious attack aimed at crippling Bitcoin would
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require enormous investment and covert planning but could conceivably be launched
by a well-funded, most likely state-sponsored, attacker. Alternatively, a well-funded
attacker could attack Bitcoin by simultaneously amassing mining hardware, compro‐
mising pool operators, and attacking other pools with denial-of-service. All of these
scenarios are theoretically possible.

Undoubtedly, a serious hashrate attack would erode confidence in Bitcoin in the short
term, possibly causing a significant price decline. However, the Bitcoin network and
software are constantly evolving, so attacks would be met with countermeasures by
the Bitcoin community.

Changing the Consensus Rules
The rules of consensus determine the validity of transactions and blocks. These rules
are the basis for collaboration between all Bitcoin nodes and are responsible for the
convergence of all local perspectives into a single consistent blockchain across the
entire network.

While the consensus rules are invariable in the short term and must be consistent
across all nodes, they are not invariable in the long term. In order to evolve and
develop the Bitcoin system, the rules can change from time to time to accommodate
new features, improvements, or bug fixes. Unlike traditional software development,
however, upgrades to a consensus system are much more difficult and require coordi‐
nation between all participants.

Hard Forks
In “Assembling and Selecting Chains of Blocks” on page 282 we looked at how the
Bitcoin network may briefly diverge, with two parts of the network following two
different branches of the blockchain for a short time. We saw how this process occurs
naturally, as part of the normal operation of the network and how the network
converges on a common blockchain after one or more blocks are mined.

There is another scenario in which the network may diverge into following two
chains: a change in the consensus rules. This type of fork is called a hard fork,
because after the fork, the network may not converge onto a single chain. Instead, the
two chains can evolve independently. Hard forks occur when part of the network is
operating under a different set of consensus rules than the rest of the network. This
may occur because of a bug or because of a deliberate change in the implementation
of the consensus rules.

Hard forks can be used to change the rules of consensus, but they require coordina‐
tion between all participants in the system. Any nodes that do not upgrade to the new
consensus rules are unable to participate in the consensus mechanism and are forced
onto a separate chain at the moment of the hard fork. Thus, a change introduced
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by a hard fork can be thought of as not “forward compatible,” in that nonupgraded
systems can no longer process blocks because of the new consensus rules.

Let’s examine the mechanics of a hard fork with a specific example.

Figure 12-2 shows a blockchain with two forks. At block height 4, a one-block fork
occurs. This is the type of spontaneous fork we saw in “Assembling and Selecting
Chains of Blocks” on page 282. With the mining of block 5, the network converges on
one chain and the fork is resolved.

Figure 12-2. A blockchain with forks.

Later, however, at block height 6, a new implementation of the client is released with
a change in the consensus rules. Starting on block height 7, miners running this new
implementation will accept a new type of bitcoin; let’s call it a “foocoin.” Immediately
after, a node running the new implementation creates a transaction that contains
a foocoin and a miner with the updated software mines block 7b containing this
transaction.

Any node or miner that has not upgraded the software to validate foocoin is now
unable to process block 7b. From their perspective, both the transaction that con‐
tained a foocoin and block 7b that contained that transaction are invalid because they
are evaluating them based upon the old consensus rules. These nodes will reject the
transaction and the block and will not propagate them. Any miners that are using the
old rules will not accept block 7b and will continue to mine a candidate block whose
parent is block 6. In fact, miners using the old rules may not even receive block 7b if
all the nodes they are connected to are also obeying the old rules and therefore not
propagating the block. Eventually, they will be able to mine block 7a, which is valid
under the old rules and does not contain any transactions with foocoins.

The two chains continue to diverge from this point. Miners on the “b” chain will
continue to accept and mine transactions containing foocoins, while miners on the
“a” chain will continue to ignore these transactions. Even if block 8b does not contain
any foocoin transactions, the miners on the “a” chain cannot process it. To them it
appears to be an invalid block, as its parent “7b” is not recognized as a valid block.
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Hard forks: Software, network, mining, and chain
For software developers, the term “fork” has another meaning, adding confusion to
the term “hard fork.” In open source software, a fork occurs when a group of develop‐
ers choose to follow a different software roadmap and start a competing implementa‐
tion of an open source project. We’ve already discussed two circumstances that will
lead to a hard fork: a bug in the consensus rules and a deliberate modification of the
consensus rules. In the case of a deliberate change to the consensus rules, a software
fork precedes the hard fork. However, for this type of hard fork to occur, a new
software implementation of the consensus rules must be developed, adopted, and
launched.

Examples of software forks that have attempted to change consensus rules include
Bitcoin XT and Bitcoin Classic. However, neither of those programs resulted in
a hard fork. While a software fork is a necessary precondition, it is not in itself
sufficient for a hard fork to occur. For a hard fork to occur, the competing imple‐
mentation must be adopted and the new rules activated, by miners, wallets, and
intermediary nodes. Conversely, there are numerous alternative implementations of
Bitcoin Core, and even software forks, that do not change the consensus rules and
barring a bug, can coexist on the network and interoperate without causing a hard
fork.

Consensus rules may differ in obvious and explicit ways, in the validation of transac‐
tions or blocks. The rules may also differ in more subtle ways, in the implementation
of the consensus rules as they apply to Bitcoin scripts or cryptographic primitives
such as digital signatures. Finally, the consensus rules may differ in unanticipated
ways because of implicit consensus constraints imposed by system limitations or
implementation details. An example of the latter was seen in the unanticipated hard
fork during the upgrade of Bitcoin Core 0.7 to 0.8, which was caused by a limitation
in the Berkeley DB implementation used to store blocks.

Conceptually, we can think of a hard fork as developing in four stages: a software
fork, a network fork, a mining fork, and a chain fork. The process begins when an
alternative implementation of the client, with modified consensus rules, is created by
developers.

When this forked implementation is deployed in the network, a certain percentage of
miners, wallet users, and intermediate nodes may adopt and run this implementation.
First, the network will fork. Nodes based on the original implementation of the
consensus rules will reject any transactions and blocks that are created under the new
rules. Furthermore, the nodes following the original consensus rules may disconnect
from any nodes that are sending them these invalid transactions and blocks. As a
result, the network may partition into two: old nodes will only remain connected to
old nodes and new nodes will only be connected to new nodes. A single block based
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on the new rules will ripple through the network and result in a partition into two
networks.

New miners may mine on top of the new block, while old miners will mine a separate
chain based on the old rules. The partitioned network will make it so that the miners
operating on separate consensus rules won’t likely receive each other’s blocks, as they
are connected to two separate networks.

Diverging miners and difficulty
As miners diverge into mining two different chains, the hashing power is split
between the chains. The mining power can be split in any proportion between the
two chains. The new rules may only be followed by a minority, or by the vast majority
of the mining power.

Let’s assume, for example, an 80%–20% split, with the majority of the mining power
using the new consensus rules. Let’s also assume that the fork occurs immediately
after a retargeting period.

The two chains would each inherit the difficulty from the retargeting period. The new
consensus rules would have 80% of the previously available mining power committed
to them. From the perspective of this chain, the mining power has suddenly declined
by 20% vis-a-vis the previous period. Blocks will be found on average every 12.5
minutes, representing the 20% decline in mining power available to extend this chain.
This rate of block issuance will continue (barring any changes in hashing power)
until 2,016 blocks are mined, which will take approximately 25,200 minutes (at 12.5
minutes per block), or 17.5 days. After 17.5 days, a retarget will occur and the
difficulty will adjust (reduced by 20%) to produce 10-minute blocks again, based on
the reduced amount of hashing power in this chain.

The minority chain, mining under the old rules with only 20% of the hashing power,
will face a much more difficult task. On this chain, blocks will now be mined every
50 minutes on average. The difficulty will not be adjusted for 2,016 blocks, which will
take 100,800 minutes, or approximately 10 weeks to mine. Assuming a fixed capacity
per block, this will also result in a reduction of transaction capacity by a factor of 5, as
there are fewer blocks per hour available to record transactions.

Contentious hard forks
This is the dawn of the development of software for decentralized consensus. Just
as other innovations in development changed both the methods and products of
software and created new methodologies, new tools, and new communities in its
wake, consensus software development also represents a new frontier in computer
science. Out of the debates, experiments, and tribulations of Bitcoin development, we
will see new development tools, practices, methodologies, and communities emerge.
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Hard forks are seen as risky because they force a minority to either upgrade or
remain on a minority chain. The risk of splitting the entire system into two compet‐
ing systems is seen by many as an unacceptable risk. As a result, many developers are
reluctant to use the hard fork mechanism to implement upgrades to the consensus
rules, unless there is near-unanimous support from the entire network. Any hard fork
proposals that do not have near-unanimous support are considered too contentious
to attempt without risking a partition of the system.

Already we have seen the emergence of new methodologies to address the risks
of hard forks. In the next section, we will look at soft forks and the methods for
signaling and activation of consensus modifications.

Soft Forks
Not all consensus rule changes cause a hard fork. Only consensus changes that are
forward-incompatible cause a fork. If the change is implemented in such a way that
an unmodified client still sees the transaction or block as valid under the previous
rules, the change can happen without a fork.

The term soft fork was introduced to distinguish this upgrade method from a “hard
fork.” In practice, a soft fork is not a fork at all. A soft fork is a forward-compatible
change to the consensus rules that allows unupgraded clients to continue to operate
in consensus with the new rules.

One aspect of soft forks that is not immediately obvious is that soft fork upgrades
can only be used to constrain the consensus rules, not to expand them. In order to
be forward compatible, transactions and blocks created under the new rules must be
valid under the old rules too, but not vice versa. The new rules can only limit what is
valid; otherwise, they will trigger a hard fork when rejected under the old rules.

Soft forks can be implemented in a number of ways—the term does not specify a
particular method, but rather a set of methods that all have one thing in common:
they don’t require all nodes to upgrade or force nonupgraded nodes out of consensus.

Two soft forks have been implemented in Bitcoin, based on the re-interpretation of
NOP opcodes. Bitcoin Script had 10 opcodes reserved for future use, NOP1 through
NOP10. Under the consensus rules, the presence of these opcodes in a script is inter‐
preted as a null-potent operator, meaning they have no effect. Execution continues
after the NOP opcode as if it wasn’t there.

A soft fork therefore can modify the semantics of a NOP code to give it new meaning.
For example, BIP65 (CHECKLOCKTIMEVERIFY) reinterpreted the NOP2 opcode. Clients
implementing BIP65 interpret NOP2 as OP_CHECKLOCKTIMEVERIFY and impose an
absolute lock time consensus rule on UTXOs that contain this opcode in their locking
scripts. This change is a soft fork because a transaction that is valid under BIP65
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is also valid on any client that is not implementing (ignorant of) BIP65. To the old
clients, the script contains an NOP code, which is ignored.

Criticisms of soft forks
Soft forks based on the NOP opcodes are relatively uncontroversial. The NOP
opcodes were placed in Bitcoin Script with the explicit goal of allowing non-
disruptive upgrades.

However, many developers are concerned that other methods of soft fork upgrades
make unacceptable trade-offs. Common criticisms of soft fork changes include:

Technical debt
Because soft forks are more technically complex than a hard fork upgrade, they
introduce technical debt, a term that refers to increasing the future cost of code
maintenance because of design trade-offs made in the past. Code complexity in
turn increases the likelihood of bugs and security vulnerabilities.

Validation relaxation
Unmodified clients see transactions as valid without evaluating the modified
consensus rules. In effect, the unmodified clients are not validating using the
full range of consensus rules, as they are blind to the new rules. This applies to
NOP-based upgrades, as well as other soft fork upgrades.

Irreversible upgrades
Because soft forks create transactions with additional consensus constraints,
they become irreversible upgrades in practice. If a soft fork upgrade were to be
reversed after being activated, any transactions created under the new rules could
result in a loss of funds under the old rules. For example, if a CLTV transaction
is evaluated under the old rules, there is no timelock constraint and it can be
spent at any time. Therefore, critics contend that a failed soft fork that had to be
reversed because of a bug would almost certainly lead to loss of funds.

Soft fork signaling with block version
Since soft forks allow unmodified clients to continue to operate within consensus,
one mechanism for “activating” a soft fork is through miners signaling that they are
ready and willing to enforce the new consensus rules. If all miners enforce the new
rules, there’s no risk of unmodified nodes accepting a block that upgraded nodes
would reject. This mechanism was introduced by BIP34.

BIP34: Signaling and activation
BIP34 used the block version field to allow miners to signal readiness for a specific
consensus rule change. Prior to BIP34, the block version was set to “1” by convention
not enforced by consensus.
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BIP34 defined a consensus rule change that required the coinbase field (input) of the
coinbase transaction to contain the block height. Prior to BIP34, the coinbase could
contain any arbitrary data the miners chose to include. After activation of BIP34,
valid blocks had to contain a specific block height at the beginning of the coinbase
and be identified with a block version number greater than or equal to “2.”

To signal their readiness to enforce the rules of BIP34, miners set the block version
to “2,” instead of “1.” This did not immediately make version “1” blocks invalid. Once
activated, version “1” blocks would become invalid and all version “2” blocks would
be required to contain the block height in the coinbase to be valid.

BIP34 defined a two-step activation mechanism based on a rolling window of 1,000
blocks. A miner would signal their individual readiness for BIP34 by constructing
blocks with “2” as the version number. Strictly speaking, these blocks did not yet have
to comply with the new consensus rule of including the block height in the coinbase
transaction because the consensus rule had not yet been activated. The consensus
rules activated in two steps:

• If 75% (750 of the most recent 1,000 blocks) are marked with version “2,” then•
version “2” blocks must contain block height in the coinbase transaction or they
are rejected as invalid. Version “1” blocks are still accepted by the network and do
not need to contain block height. The old and new consensus rules coexist during
this period.

• When 95% (950 of the most recent 1,000 blocks) are version “2,” version “1”•
blocks are no longer considered valid. Version “2” blocks are valid only if they
contain the block height in the coinbase (as per the previous threshold). There‐
after, all blocks must comply with the new consensus rules, and all valid blocks
must contain block height in the coinbase transaction.

After successful signaling and activation under the BIP34 rules, this mechanism was
used twice more to activate soft forks:

• BIP66 Strict DER Encoding of Signatures was activated by BIP34 style signaling•
with a block version “3.”

• BIP65 CHECKLOCKTIMEVERIFY was activated by BIP34 style signaling with a block•
version “4.”

After the activation of BIP65, the signaling and activation mechanism of BIP34 was
retired and replaced with the BIP9 signaling mechanism described next.
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BIP9: Signaling and activation
The mechanism used by BIP34, BIP66, and BIP65 was successful in activating three
soft forks. However, it was replaced because it had several limitations:

• By using the integer value of the block version, only one soft fork could be•
activated at a time, so it required coordination between soft fork proposals and
agreement on their prioritization and sequencing.

• Furthermore, because the block version was incremented, the mechanism didn’t•
offer a straightforward way to reject a change and then propose a different one.
If old clients were still running, they could mistake signaling for a new change as
signaling for the previously rejected change.

• Each new change irrevocably reduced the available block versions for future•
changes.

BIP9 was proposed to overcome these challenges and improve the rate and ease of
implementing future changes.

BIP9 interprets the block version as a bit field instead of an integer. Because the block
version was originally used as an integer for versions 1 through 4, only 29 bits remain
available to be used as a bit field. This leaves 29 bits that can be used to independently
and simultaneously signal readiness on 29 different proposals.

BIP9 also sets a maximum time for signaling and activation. This way miners don’t
need to signal forever. If a proposal is not activated within the TIMEOUT period
(defined in the proposal), the proposal is considered rejected. The proposal may be
resubmitted for signaling with a different bit, renewing the activation period.

Furthermore, after the TIMEOUT has passed and a feature has been activated or
rejected, the signaling bit can be reused for another feature without confusion.
Therefore, up to 29 changes can be signaled in parallel. After TIMEOUT, the bits can be
“recycled” to propose new changes.

While signaling bits can be reused or recycled, as long as the voting
period does not overlap, the authors of BIP9 recommend that bits
are reused only when necessary; unexpected behavior could occur
due to bugs in older software. In short, we should not expect to see
reuse until all 29 bits have been used once.

Proposed changes are identified by a data structure that contains the following fields:

name
A short description used to distinguish between proposals. Most often the BIP
describing the proposal, as “bipN,” where N is the BIP number.
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bit
0 through 28, the bit in the block version that miners use to signal approval for
this proposal.

starttime
The time (based on MTP) that signaling starts after which the bit’s value is
interpreted as signaling readiness for the proposal.

endtime
The time (based on MTP) after which the change is considered rejected if it has
not reached the activation threshold.

Unlike BIP34, BIP9 counts activation signaling in whole intervals based on the diffi‐
culty retarget period of 2,016 blocks. For every retarget period, if the sum of blocks
signaling for a proposal exceeds 95% (1,916 of 2,016), the proposal will be activated
one retarget period later.

BIP9 offers a proposal state diagram to illustrate the various stages and transitions for
a proposal, as shown in Figure 12-3.

Figure 12-3. BIP9 state transition diagram.

Proposals start in the DEFINED state once their parameters are known (defined) in
the Bitcoin software. For blocks with MTP after the start time, the proposal state
transitions to STARTED. If the voting threshold is exceeded within a retarget period
and the timeout has not been exceeded, the proposal state transitions to LOCKED_IN.
One retarget period later, the proposal becomes ACTIVE. Proposals remain in the
ACTIVE state perpetually once they reach that state. If the timeout elapses before the
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voting threshold has been reached, the proposal state changes to FAILED, indicating a
rejected proposal. FAILED proposals remain in that state perpetually.

BIP9 was first implemented for the activation of CHECKSEQUENCEVERIFY and associ‐
ated BIPs (68, 112, 113). The proposal named “csv” was activated successfully in July
of 2016.

The standard is defined in BIP9 (Version bits with timeout and delay).

BIP8: Mandatory lock-in with early activation
After BIP9 was successfully used for the CSV-related soft fork, the next implementa‐
tion of a soft fork consensus change also attempted to use it for miner-enforced
activation. However, some people opposed that soft fork proposal, called segwit, and
very few miners signaled readiness to enforce segwit for several months.

It was later discovered that some miners, especially miners associated with the dis‐
senters, may have been using hardware that gave them a hidden advantage over other
miners using a feature called covert ASICBoost. Unintentionally, segwit interfered
with the ability to use covert ASICBoost—if segwit was activated, the miners using it
would lose their hidden advantage.

After the community discovered this conflict of interest, some users decided they
wanted to exercise their power not to accept blocks from miners unless those blocks
followed certain rules. The rules the users ultimately wanted were the new rules
added by segwit, but the users wanted to multiply their efforts by taking advantage
of the large numbers of nodes that planned to enforce the rules of segwit if enough
miners signaled readiness for it. A pseudonymous developer proposed BIP148, which
required any node implementing it to reject all blocks that didn’t signal for segwit
starting on a certain date and continuing until segwit activated.

Although only a limited number of users actually ran BIP148 code, many other
users seemed to agree with the sentiment and may have been prepared to commit to
BIP148. A few days before BIP148 was due to go into effect, almost all miners began
signaling their readiness to enforce segwit’s rules. Segwit reached its lock-in threshold
about two weeks later and activated about two weeks after that.

Many users came to believe that it was a flaw in BIP9 that miners could prevent an
activation attempt from being successful by not signaling for a year. They wanted a
mechanism that would ensure a soft fork was activated by a particular block height
but which also allowed miners to signal they were ready to lock it in earlier.

The method developed for that was BIP8, which is similar to BIP9 except that it
defines a MUST_SIGNAL period where miners must signal that they are ready to enforce
the soft fork proposal.
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Software was published that used BIP8 to attempt to activate the taproot proposal in
2021, and there was evidence that at least a small number of users ran that software.
Some of those users also claim that their willingness to use BIP8 to force miners to
activate taproot was the reason it did eventually activate. They claim that if taproot
had not been activated quickly, other users would have also begun running BIP8.
Unfortunately, there’s no way to prove what would have happened, and so we can’t say
for sure how much BIP8 contributed to the activation of taproot.

Speedy trial: Fail fast or succeed eventually
Although BIP9 by itself did not seem to result in the activation of segwit despite
widespread support for the proposal, it was unclear to many protocol developers that
BIP9 was itself a failure. As mentioned, the failure of miners to initially signal support
for segwit may have been largely the result of a one-time conflict of interest that
wouldn’t apply in the future. To some, it seemed worth trying BIP9 again. Others
disagreed and wanted to use BIP8.

After months of discussions between those who were the most interested in specific
activation ideas, a compromise was suggested in order to activate taproot. A modified
version of BIP9 was suggested that would only give miners a very short amount of
time to signal their intention to enforce taproot rules. If signaling was unsuccessful,
a different activation mechanism could be used (or, potentially, the idea could be
abandoned). If signaling was successful, enforcement would begin about six months
later at a specified block height. This mechanism was named speedy trial by one of the
people who helped promote it.

Speedy trial activation was tried, miners quickly signaled their willingness to enforce
the rules of taproot, and taproot was successfully activated about six months later. To
proponents of speedy trial, it was a clear success. Others were still disappointed that
BIP8 wasn’t used.

It’s not clear whether or not speedy trial will be used again for a future attempt to
activate a soft fork.

Consensus Software Development
Consensus software continues to evolve, and there is much discussion on the various
mechanisms for changing the consensus rules. By its very nature, Bitcoin sets a very
high bar on coordination and consensus for changes. As a decentralized system, it
has no “authority” that can impose its will on the participants of the network. Power
is diffused between multiple constituencies such as miners, protocol developers,
wallet developers, exchanges, merchants, and end users. Decisions cannot be made
unilaterally by any of these constituencies. For example, while miners can censor
transactions by simple majority (51%), they are constrained by the consent of the
other constituencies. If they act unilaterally, the rest of the participants may refuse
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to accept their blocks, keeping the economic activity on a minority chain. Without
economic activity (transactions, merchants, wallets, exchanges), the miners will be
mining a worthless currency with empty blocks. This diffusion of power means that
all the participants must coordinate, or no changes can be made. Status quo is the
stable state of this system with only a few changes possible if there is strong consensus
by a very large majority. The 95% threshold for soft forks is reflective of this reality.

It is important to recognize that there is no perfect solution for consensus develop‐
ment. Both hard forks and soft forks involve trade-offs. For some types of changes,
soft forks may be a better choice; for others, hard forks may be a better choice. There
is no perfect choice; both carry risks. The one constant characteristic of consensus
software development is that change is difficult and consensus forces compromise.

Some see this as a weakness of consensus systems. In time, you may come to see it as
the system’s greatest strength.

At this point in the book, we’ve finished talking about the Bitcoin system itself. What’s
left are software, tools, and other protocols built on top of Bitcoin.
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CHAPTER 13

Bitcoin Security

Securing your bitcoins is challenging because bitcoins are are not like a balance
in a bank account. Your bitcoins are very much like digital cash or gold. You’ve
probably heard the expression, “Possession is nine-tenths of the law.” Well, in Bitcoin,
possession is ten-tenths of the law. Possession of the keys to spend certain bitcoins
is equivalent to possession of cash or a chunk of precious metal. You can lose it,
misplace it, have it stolen, or accidentally give the wrong amount to someone. In
every one of these cases, users have no recourse within the protocol, just as if they
dropped cash on a public sidewalk.

However, the Bitcoin system has capabilities that cash, gold, and bank accounts do
not. A Bitcoin wallet, containing your keys, can be backed up like any file. It can
be stored in multiple copies, even printed on paper for hard-copy backup. You can’t
“back up” cash, gold, or bank accounts. Bitcoin is different enough from anything
that has come before that we need to think about securing our bitcoins in a novel way
too.

Security Principles
The core principle in Bitcoin is decentralization and it has important implications
for security. A centralized model, such as a traditional bank or payment network,
depends on access control and vetting to keep bad actors out of the system. By
comparison, a decentralized system like Bitcoin pushes the responsibility and control
to the users. Because the security of the network is based on independent verification,
the network can be open and no encryption is required for Bitcoin traffic (although
encryption can still be useful).
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On a traditional payment network, such as a credit card system, the payment is
open-ended because it contains the user’s private identifier (the credit card number).
After the initial charge, anyone with access to the identifier can “pull” funds and
charge the owner again and again. Thus, the payment network has to be secured
end-to-end with encryption and must ensure that no eavesdroppers or intermediaries
can compromise the payment traffic in transit or when it is stored (at rest). If a
bad actor gains access to the system, he can compromise current transactions and
payment tokens that can be used to create new transactions. Worse, when customer
data is compromised, the customers are exposed to identity theft and must take
action to prevent fraudulent use of the compromised accounts.

Bitcoin is dramatically different. A Bitcoin transaction authorizes only a specific value
to a specific recipient and cannot be forged. It does not reveal any private informa‐
tion, such as the identities of the parties, and cannot be used to authorize additional
payments. Therefore, a Bitcoin payment network does not need to be encrypted
or protected from eavesdropping. In fact, you can broadcast Bitcoin transactions
over an open public channel, such as unsecured WiFi or Bluetooth, with no loss of
security.

Bitcoin’s decentralized security model puts a lot of power in the hands of the users.
With that power comes responsibility for maintaining the secrecy of their keys. For
most users that is not easy to do, especially on general-purpose computing devices
such as internet-connected smartphones or laptops. Although Bitcoin’s decentralized
model prevents the type of mass compromise seen with credit cards, many users are
not able to adequately secure their keys and get hacked, one by one.

Developing Bitcoin Systems Securely
A critical principle for Bitcoin developers is decentralization. Most developers will be
familiar with centralized security models and might be tempted to apply these models
to their Bitcoin applications, with disastrous results.

Bitcoin’s security relies on decentralized control over keys and on independent trans‐
action validation by users. If you want to leverage Bitcoin’s security, you need to
ensure that you remain within the Bitcoin security model. In simple terms: don’t take
control of keys away from users and don’t outsource validation.

For example, many early Bitcoin exchanges concentrated all user funds in a single
“hot” wallet with keys stored on a single server. Such a design removes control from
users and centralizes control over keys in a single system. Many such systems have
been hacked, with disastrous consequences for their customers.
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Unless you are prepared to invest heavily in operational security, multiple layers
of access control, and audits (as the traditional banks do), you should think very
carefully before taking funds outside of Bitcoin’s decentralized security context. Even
if you have the funds and discipline to implement a robust security model, such a
design merely replicates the fragile model of traditional financial networks, plagued
by identity theft, corruption, and embezzlement. To take advantage of Bitcoin’s
unique decentralized security model, you have to avoid the temptation of centralized
architectures that might feel familiar but ultimately subvert Bitcoin’s security.

The Root of Trust
Traditional security architecture is based upon a concept called the root of trust,
which is a trusted core used as the foundation for the security of the overall system
or application. Security architecture is developed around the root of trust as a series
of concentric circles, like layers in an onion, extending trust outward from the center.
Each layer builds upon the more-trusted inner layer using access controls, digital
signatures, encryption, and other security primitives. As software systems become
more complex, they are more likely to contain bugs, which make them vulnerable
to security compromise. As a result, the more complex a software system becomes,
the harder it is to secure. The root of trust concept ensures that most of the trust is
placed within the least complex part of the system, and therefore the least vulnerable
parts of the system, while more complex software is layered around it. This security
architecture is repeated at different scales, first establishing a root of trust within the
hardware of a single system, then extending that root of trust through the operating
system to higher-level system services, and finally across many servers layered in
concentric circles of diminishing trust.

Bitcoin security architecture is different. In Bitcoin, the consensus system creates a
trusted blockchain that is completely decentralized. A correctly validated blockchain
uses the genesis block as the root of trust, building a chain of trust up to the current
block. Bitcoin systems can and should use the blockchain as their root of trust. When
designing a complex Bitcoin application that consists of services on many different
systems, you should carefully examine the security architecture in order to ascertain
where trust is being placed. Ultimately, the only thing that should be explicitly trusted
is a fully validated blockchain. If your application explicitly or implicitly vests trust in
anything but the blockchain, that should be a source of concern because it introduces
vulnerability. A good method to evaluate the security architecture of your application
is to consider each individual component and evaluate a hypothetical scenario where
that component is completely compromised and under the control of a malicious
actor. Take each component of your application, in turn, and assess the impacts on
the overall security if that component is compromised. If your application is no
longer secure when components are compromised, that shows you have misplaced
trust in those components. A Bitcoin application without vulnerabilities should be
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vulnerable only to a compromise of the Bitcoin consensus mechanism, meaning that
its root of trust is based on the strongest part of the Bitcoin security architecture.

The numerous examples of hacked Bitcoin exchanges serve to underscore this point
because their security architecture and design fails even under the most casual scru‐
tiny. These centralized implementations had invested trust explicitly in numerous
components outside the Bitcoin blockchain, such as hot wallets, centralized data‐
bases, vulnerable encryption keys, and similar schemes.

User Security Best Practices
Humans have used physical security controls for thousands of years. By comparison,
our experience with digital security is less than 50 years old. Modern general-purpose
operating systems are not very secure and not particularly suited to storing digital
money. Our computers are constantly exposed to external threats via always-on
internet connections. They run thousands of software components from hundreds of
authors, often with unconstrained access to the user’s files. A single piece of rogue
software, among the many thousands installed on your computer, can compromise
your keyboard and files, stealing any bitcoins stored in wallet applications. The level
of computer maintenance required to keep a computer virus-free and trojan-free is
beyond the skill level of all but a tiny minority of computer users.

Despite decades of research and advancements in information security, digital assets
are still woefully vulnerable to a determined adversary. Even the most highly pro‐
tected and restricted systems, in financial services companies, intelligence agencies,
and defense contractors, are frequently breached. Bitcoin creates digital assets that
have intrinsic value and can be stolen and diverted to new owners instantly and
irrevocably. This creates a massive incentive for hackers. Until now, hackers had
to convert identity information or account tokens—such as credit cards and bank
accounts—into value after compromising them. Despite the difficulty of fencing
and laundering financial information, we have seen ever-escalating thefts. Bitcoin
escalates this problem because it doesn’t need to be fenced or laundered; bitcoins are
valuable by themselves.

Bitcoin also creates the incentives to improve computer security. Whereas previously
the risk of computer compromise was vague and indirect, Bitcoin makes these risks
clear and obvious. Holding bitcoins on a computer serves to focus the user’s mind on
the need for improved computer security. As a direct result of the proliferation and
increased adoption of Bitcoin and other digital currencies, we have seen an escalation
in both hacking techniques and security solutions. In simple terms, hackers now have
a very juicy target and users have a clear incentive to defend themselves.
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Over the past three years, as a direct result of Bitcoin adoption, we have seen
tremendous innovation in the realm of information security in the form of hardware
encryption, key storage and hardware signing devices, multisignature technology,
and digital escrow. In the following sections we will examine various best practices
for practical user security.

Physical Bitcoin Storage
Because most users are far more comfortable with physical security than information
security, a very effective method for protecting bitcoins is to convert them into
physical form. Bitcoin keys, and the seeds used to create them, are nothing more than
long numbers. This means that they can be stored in a physical form, such as printed
on paper or etched on a metal plate. Securing the keys then becomes as simple as
physically securing a printed copy of the key seed. A seed that is printed on paper is
called a “paper backup,” and many wallets can create them. Keeping bitcoins offline
is called cold storage and it is one of the most effective security techniques. A cold
storage system is one where the keys are generated on an offline system (one never
connected to the internet) and stored offline either on paper or on digital media, such
as a USB memory stick.

Hardware Signing Devices
In the long term, Bitcoin security may increasingly take the form of tamper-proof
hardware signing devices. Unlike a smartphone or desktop computer, a Bitcoin hard‐
ware signing device only needs to hold keys and use them to generate signatures.
Without general-purpose software to compromise and with limited interfaces, hard‐
ware signing devices can deliver strong security to nonexpert users. Hardware signing
devices may become the predominant method of storing bitcoins.

Ensuring Your Access
Although most users are rightly concerned about theft of their bitcoins, there is an
even bigger risk. Data files get lost all the time. If they contain Bitcoin keys, the loss
is much more painful. In the effort to secure their Bitcoin wallets, users must be very
careful not to go too far and end up losing their bitcoins. In July 2011, a well-known
Bitcoin awareness and education project lost almost 7,000 bitcoin. In their effort to
prevent theft, the owners had implemented a complex series of encrypted backups.
In the end they accidentally lost the encryption keys, making the backups worthless
and losing a fortune. Like hiding money by burying it in the desert, if you secure your
bitcoins too well you might not be able to find them again.
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To spend bitcoins, you may need to back up more than just your
private keys or the BIP32 seed used to derive them. This is espe‐
cially the case when multisignatures or complex scripts are being
used. Most output scripts commit to the actual conditions that
must be fulfilled to spend the bitcoins in that output, and it’s not
possible to fulfill that commitment unless your wallet software can
reveal those conditions to the network. Wallet recovery codes must
include this information. For more details, see Chapter 5.

Diversifying Risk
Would you carry your entire net worth in cash in your wallet? Most people would
consider that reckless, yet Bitcoin users often keep all their bitcoins using a single
wallet application. Instead, users should spread the risk among multiple and diverse
Bitcoin applications. Prudent users will keep only a small fraction, perhaps less than
5%, of their bitcoins in an online or mobile wallet as “pocket change.” The rest should
be split between a few different storage mechanisms, such as a desktop wallet and
offline (cold storage).

Multisig and Governance
Whenever a company or individual stores large amounts of bitcoins, they should
consider using a multisignature Bitcoin address. Multisignature addresses secure
funds by requiring more than one signature to make a payment. The signing keys
should be stored in a number of different locations and under the control of different
people. In a corporate environment, for example, the keys should be generated inde‐
pendently and held by several company executives to ensure that no single person can
compromise the funds. Multisignature addresses can also offer redundancy, where a
single person holds several keys that are stored in different locations.

Survivability
One important security consideration that is often overlooked is availability, espe‐
cially in the context of incapacity or death of the key holder. Bitcoin users are told to
use complex passwords and keep their keys secure and private, not sharing them with
anyone. Unfortunately, that practice makes it almost impossible for the user’s family
to recover any funds if the user is not available to unlock them. In most cases, in
fact, the families of Bitcoin users might be completely unaware of the existence of the
bitcoin funds.
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If you have a lot of bitcoins, you should consider sharing access details with a
trusted relative or lawyer. A more complex survivability scheme can be set up with
multisignature access and estate planning through a lawyer specialized as a “digital
asset executor.”

Bitcoin is a complex new technology that is still being explored by developers. Over
time we will develop better security tools and practices that are easier to use by
nonexperts. For now, Bitcoin users can use many of the tips discussed here to enjoy a
secure and trouble-free Bitcoin experience.
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CHAPTER 14

Second-Layer Applications

Let’s now build on our understanding of the primary Bitcoin system (the first layer)
by looking at it as a platform for other applications, or second layers. In this chapter
we will look at the features offered by Bitcoin as an application platform. We will
consider the application building primitives, which form the building blocks of any
blockchain application. We will look at several important applications that use these
primitives, such as client-side validation, payment channels, and routed payment
channels (Lightning Network).

Building Blocks (Primitives)
When operating correctly and over the long term, the Bitcoin system offers certain
guarantees, which can be used as building blocks to create applications. These
include:

No double-spend
The most fundamental guarantee of Bitcoin’s decentralized consensus algorithm
ensures that no UTXO can be spent twice in the same valid chain of blocks.

Immutability
Once a transaction is recorded in the blockchain and sufficient work has
been added with subsequent blocks, the transaction’s data becomes practically
immutable. Immutability is underwritten by energy, as rewriting the blockchain
requires the expenditure of energy to produce PoW. The energy required and
therefore the degree of immutability increases with the amount of work commit‐
ted on top of the block containing a transaction.
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Neutrality
The decentralized Bitcoin network propagates valid transactions regardless of the
origin of those transactions. This means that anyone can create a valid transac‐
tion with sufficient fees and trust they will be able to transmit that transaction
and have it included in the blockchain at any time.

Secure timestamping
The consensus rules reject any block whose timestamp is too far in the future
and attempt to prevent blocks with timestamps too far in the past. This ensures
that timestamps on blocks can be trusted to a certain degree. The timestamp
on a block implies an unspent-before reference for the inputs of all included
transactions.

Authorization
Digital signatures, validated in a decentralized network, offer authorization guar‐
antees. Scripts that contain a requirement for a digital signature cannot be exe‐
cuted without authorization by the holder of the private key implied in the script.

Auditability
All transactions are public and can be audited. All transactions and blocks can be
linked back in an unbroken chain to the genesis block.

Accounting
In any transaction (except the coinbase transaction) the value of inputs is equal
to the value of outputs plus fees. It is not possible to create or destroy bitcoin
value in a transaction. The outputs cannot exceed the inputs.

Nonexpiration
A valid transaction does not expire. If it is valid today, it will be valid in the
near future, as long as the inputs remain unspent and the consensus rules do not
change.

Integrity
The outputs of a Bitcoin transaction signed with SIGHASH_ALL or parts of a trans‐
action signed by another SIGHASH type cannot be modified without invalidating
the signature, thus invalidating the transaction itself.

Transaction atomicity
Bitcoin transactions are atomic. They are either valid and confirmed (mined)
or not. Partial transactions cannot be mined, and there is no interim state for a
transaction. At any point in time a transaction is either mined or not.

Discrete (indivisible) units of value
Transaction outputs are discrete and indivisible units of value. They can either be
spent or unspent, in full. They cannot be divided or partially spent.
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Quorum of control
Multisignature constraints in scripts impose a quorum of authorization, prede‐
fined in the multisignature scheme. The requirement is enforced by the consen‐
sus rules.

Timelock/aging
Any script clause containing a relative or absolute timelock can only be executed
after its age exceeds the time specified.

Replication
The decentralized storage of the blockchain ensures that when a transaction
is mined, after sufficient confirmations, it is replicated across the network and
becomes durable and resilient to power loss, data loss, etc.

Forgery protection
A transaction can only spend existing, validated outputs. It is not possible to
create or counterfeit value.

Consistency
In the absence of miner partitions, blocks that are recorded in the blockchain
are subject to reorganization or disagreement with exponentially decreasing like‐
lihood, based on the depth at which they are recorded. Once deeply recorded, the
computation and energy required to change makes change practically infeasible.

Recording external state
A transaction can commit to a data value, via OP_RETURN or pay to contract,
representing a state transition in an external state machine.

Predictable issuance
Less than 21 million bitcoin will be issued at a predictable rate.

The list of building blocks is not complete, and more are added with each new feature
introduced into Bitcoin.

Applications from Building Blocks
The building blocks offered by Bitcoin are elements of a trust platform that can be
used to compose applications. Here are some examples of applications that exist today
and the building blocks they use:

Proof-of-Existence (Digital Notary)
Immutability + Timestamp + Durability. A transaction on the blockchain can
commit to a value, proving that a piece of data existed at the time it was recorded
(Timestamp). The commitment cannot be modified ex-post-facto (Immutabil‐
ity), and the proof will be stored permanently (Durability).
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Kickstarter (Lighthouse)
Consistency + Atomicity + Integrity. If you sign one input and the output
(Integrity) of a fundraiser transaction, others can contribute to the fundraiser
but it cannot be spent (Atomicity) until the goal (output amount) is funded
(Consistency).

Payment Channels
Quorum of Control + Timelock + No Double Spend + Nonexpiration + Censor‐
ship Resistance + Authorization. A multisig 2-of-2 (Quorum) with a timelock
(Timelock) used as the “settlement” transaction of a payment channel can be held
(Nonexpiration) and spent at any time (Censorship Resistance) by either party
(Authorization). The two parties can then create commitment transactions that
supersede (No Double-Spend) the settlement on a shorter timelock (Timelock).

Colored Coins
The first blockchain application we will discuss is colored coins.

Colored coins refers to a set of similar technologies that use Bitcoin transactions to
record the creation, ownership, and transfer of extrinsic assets other than bitcoin. By
“extrinsic” we mean assets that are not stored directly on the Bitcoin blockchain, as
opposed to bitcoin itself, which is an asset intrinsic to the blockchain.

Colored coins are used to track digital assets as well as physical assets held by third
parties and traded through certificates of ownership associated with colored coins.
Digital asset colored coins can represent intangible assets such as a stock certificate,
license, virtual property (game items), or most any form of licensed intellectual
property (trademarks, copyrights, etc.). Tangible asset colored coins can represent
certificates of ownership of commodities (gold, silver, oil), land titles, automobiles,
boats, aircraft, etc.

The term derives from the idea of “coloring” or marking a nominal amount of
bitcoin, for example, a single satoshi, to represent something other than the bitcoin
amount itself. As an analogy, consider stamping a $1 note with a message saying,
“this is a stock certificate of ACME” or “this note can be redeemed for 1 oz of silver”
and then trading the $1 note as a certificate of ownership of this other asset. The
first implementation of colored coins, named Enhanced Padded-Order-Based Coloring
or EPOBC, assigned extrinsic assets to a 1-satoshi output. In this way, it was a true
“colored coin,” as each asset was added as an attribute (color) of a single satoshi.

More recent implementations of colored coins use other mechanisms to attach meta‐
data with a transaction, in conjunction with external data stores that associate the
metadata to specific assets. The three main mechanisms used as of this writing are
single-use seals, pay to contract, and client-side validation.
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Single-Use Seals
Single-use seals originate in physical security. Someone shipping an item through
a third party needs a way to detect tampering, so they secure their package with a
special mechanism that will become clearly damaged if the package is opened. If the
package arrives with the seal intact, the sender and receiver can be confident that the
package wasn’t opened in transit.

In the context of colored coins, single-use seals refer to a data structure than can only
be associated with another data structure once. In Bitcoin, this definition is fulfilled
by unspent transaction outputs (UTXOs). A UTXO can only be spent once within a
valid blockchain, and the process of spending them associates them with the data in
the spending transaction.

This provides part of the basis for the modern transfer for colored coins. One or
more colored coins are received to a UTXO. When that UTXO is spent, the spending
transaction must describe how the colored coins are to be spent. That brings us to pay
to contract (P2C).

Pay to Contract (P2C)
We previously learned about P2C in “Pay to Contract (P2C)” on page 176, where it
became part of the basis for the taproot upgrade to Bitcoin’s consensus rules. As a
short reminder, P2C allows a spender (Bob) and receiver (Alice) to agree on some
data, such as a contract, and then tweak Alice’s public key so that it commits to the
contract. At any time, Bob can reveal Alice’s underlying key and the tweak used to
commit to the contract, proving that she received the funds. If Alice spends the funds,
that fully proves that she knew about the contract, since the only way she could spend
the funds received to a P2C tweaked key is by knowing the tweak (the contract).

A powerful attribute of P2C tweaked keys is that they look like any other public keys
to everyone besides Alice and Bob, unless they choose to reveal the contract used
to tweak the keys. Nothing is publicly revealed about the contract—not even that a
contract between them exists.

A P2C contract can be arbitrarily long and detailed, the terms can be written in any
language, and it can reference anything the participants want because the contract is
not validated by full nodes and only the public key with the commitment is published
to the blockchain.

In the context of colored coins, Bob can open the single-use seal containing his
colored coins by spending the associated UTXO. In the transaction spending that
UTXO, he can commit to a contract indicating the terms that the next owner (or
owners) of the colored coins must fulfill in order to further spend the coins. The new
owner doesn’t need to be Alice, even though Alice is the one receiving the UTXO that
Bob spends and Alice has tweaked her public key by the contract terms.
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Because full nodes don’t (and can’t) validate that the contract is followed correctly,
we need to figure out who is responsible for validation. That brings us to client-side
validation.

Client-Side Validation
Bob had some colored coins associated with a UTXO. He spent that UTXO in a way
that committed to a contract that indicated how the next receiver (or receivers) of
the colored coins will prove their ownership over the coins in order to further spend
them.

In practice, Bob’s P2C contract likely simply committed to one or more unique
identifiers for the UTXOs that will be used as single-use seals for deciding when the
colored coins are next spent. For example, Bob’s contract may have indicated that the
UTXO Alice received to her P2C tweaked public key now controls half of his colored
coins, with the other half of his colored coins now being assigned to a different
UTXO that may have nothing to do with the transaction between Alice and Bob. This
provides significant privacy against blockchain surveillance.

When Alice later wants to spend her colored coins to Dan, she first needs to prove
to Dan that she controls the colored coins. Alice can do this by revealing to Dan her
underlying P2C public key and the P2C contract terms chosen by Bob. Alice also
reveals to Dan the UTXO that Bob used as the single-use seal and any information
that Bob gave her about the previous owners of the colored coins. In short, Alice
gives Dan a complete set of history about every previous transfer of the colored coins,
with each step anchored in the Bitcoin blockchain (but not storing any special data
in the chain—just regular public keys). That history is a lot like the history of regular
Bitcoin transactions that we call the blockchain, but the colored history is completely
invisible to other users of the blockchain.

Dan validates this history using his software, called client-side validation. Notably,
Dan only needs to receive and validate the parts of history that pertain to the colored
coins he wants to receive. He doesn’t need information about what happened to other
people’s colored coins—for example, he’ll never need to know what happened to
the other half of Bob’s coins, the ones that Bob didn’t transfer to Alice. This helps
enhance the privacy of the colored coin protocol.

Now that we’ve learned about single-use seals, pay to contract, and client-side valida‐
tion, we can look at the two main protocols that use them as of this writing, RGB and
Taproot Assets.

RGB
Developers of the RGB protocol pioneered many of the ideas used in modern
Bitcoin-based colored coin protocols. A primary requirement of the design for RGB

316 | Chapter 14: Second-Layer Applications



was making the protocol compatible with offchain payment channels (see “Payment
Channels and State Channels” on page 318), such as those used in Lightning Network
(LN). That’s accomplished at each layer of the RGB protocol:

Single-use seals
To create a payment channel, Bob assigns his colored coins to a UTXO that
requires signatures from both him and Alice to spend. Their mutual control over
that UTXO serves as the single-use seal for future transfers.

Pay to contract (P2C)
Alice and Bob can now sign multiple versions of a P2C contract. The enforce‐
ment mechanism of the underlying payment channel ensures that both parties
are incentivized to only publish the latest version of the contract onchain.

Client-side validation
To ensure that neither Alice nor Bob needs to trust each other, they each check
all previous transfers of the colored coins back to their creation to ensure all
contract rules were followed correctly.

The developers of RGB have described other uses for their protocol, such as creating
identity tokens that can be periodically updated to protect against private key com‐
promise.

For more information, see RGB’s documentation.

Taproot Assets
Formerly called Taro, Taproot Assets are a colored coin protocol that is heavily influ‐
enced by RGB. Compared to RGB, Taproot Assets use a form of P2C contracts that
is very similar to the version used by taproot for enabling MAST functionality (see
“Merklized Alternative Script Trees (MAST)” on page 172). The claimed advantage
of Taproot Assets over RGB is that its similarity to the widely used taproot protocol
makes it simpler for wallets and other software to implement. One downside is that it
may not be as flexible as the RGB protocol, especially when it comes to implementing
nonasset features such as identity tokens.

Taproot is part of the Bitcoin protocol. Taproot Assets is not, despite
the similar name. Both RGB and Taproot Assets are protocols built
on top of the Bitcoin protocol. The only asset natively supported by
Bitcoin is bitcoin.

Even more than RGB, Taproot Assets has been designed to be compatible with LN.
One challenge with forwarding nonbitcoin assets over LN is that there are two ways
to accomplish the sending, each with a different set of trade-offs:
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Native forwarding
Every hop in the path between the spender and the receiver must know about
the particular asset (type of colored coin) and have a sufficient balance of it to
support forwarding a payment.

Translated forwarding
The hop next to the spender and the hop next to the receiver must know
about the particular asset and have a sufficient balance of it to support forward‐
ing a payment, but every other hop only needs to support forwarding bitcoin
payments.

Native forwarding is conceptually simpler but essentially requires a separate
Lightning-type network for every asset. Translated forwarding allows building on
the economies of scale of the Bitcoin LN, but it may be vulnerable to a problem called
the free American call option, where a receiver may selectively accept or reject certain
payments depending on recent changes to the exchange rate in order to siphon
money from the hop next to them. Although there’s no known perfect solution to the
free American call option, there may be practical solutions that limit its harm.

Both Taproot Assets and RGB can technically support both native and translated
forwarding. Taproot Assets is specifically designed around translated forwarding,
whereas RGB has seen proposals to implement both.

For more information, see Taproot Asset’s documentation. Additionally, the Taproot
Asset developers are working on BIPs that may be available after this book goes into
print.

Payment Channels and State Channels
Payment channels are a trustless mechanism for exchanging Bitcoin transactions
between two parties outside of the Bitcoin blockchain. These transactions, which
would be valid if settled on the Bitcoin blockchain, are held offchain instead, waiting
for eventual batch settlement. Because the transactions are not settled, they can be
exchanged without the usual settlement latency, allowing extremely high transaction
throughput, low latency, and fine granularity.

Actually, the term channel is a metaphor. State channels are virtual constructs repre‐
sented by the exchange of state between two parties outside of the blockchain. There
are no “channels” per se, and the underlying data transport mechanism is not the
channel. We use the term channel to represent the relationship and shared state
between two parties outside of the blockchain.

To further explain this concept, think of a TCP stream. From the perspective of
higher-level protocols, it is a “socket” connecting two applications across the internet.
But if you look at the network traffic, a TCP stream is just a virtual channel over
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IP packets. Each endpoint of the TCP stream sequences and assembles IP packets
to create the illusion of a stream of bytes. Underneath, it’s all disconnected packets.
Similarly, a payment channel is just a series of transactions. If properly sequenced and
connected, they create redeemable obligations that you can trust even though you
don’t trust the other side of the channel.

In this section we will look at various forms of payment channels. First, we will exam‐
ine the mechanisms used to construct a one-way (unidirectional) payment channel
for a metered micropayment service, such as streaming video. Then, we will expand
on this mechanism and introduce bidirectional payment channels. Finally, we will
look at how bidirectional channels can be connected end-to-end to form multihop
channels in a routed network, first proposed under the name Lightning Network.

Payment channels are part of the broader concept of a state channel, which represents
an offchain alteration of state, secured by eventual settlement in a blockchain. A
payment channel is a state channel where the state being altered is the balance of a
virtual currency.

State Channels—Basic Concepts and Terminology
A state channel is established between two parties through a transaction that locks
a shared state on the blockchain. This is called the funding transaction. This single
transaction must be transmitted to the network and mined to establish the channel.
In the example of a payment channel, the locked state is the initial balance (in
currency) of the channel.

The two parties then exchange signed transactions, called commitment transactions,
that alter the initial state. These transactions are valid transactions in that they could
be submitted for settlement by either party, but instead are held offchain by each
party pending the channel closure. State updates can be created as fast as each party
can create, sign, and transmit a transaction to the other party. In practice this means
that dozens of transactions per second can be exchanged.

When exchanging commitment transactions the two parties also discourage use of
the previous states, so that the most up-to-date commitment transaction is always the
best one to be redeemed. This discourages either party from cheating by unilaterally
closing the channel with a prior state that is more favorable to them than the current
state. We will examine the various mechanisms that can be used to discourage
publication of prior states in the rest of this chapter.

Finally, the channel can be closed either cooperatively, by submitting a final settle‐
ment transaction to the blockchain, or unilaterally, by either party submitting the
last commitment transaction to the blockchain. A unilateral close option is needed
in case one of the parties unexpectedly disconnects. The settlement transaction repre‐
sents the final state of the channel and is settled on the blockchain.
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In the entire lifetime of the channel, only two transactions need to be submitted for
mining on the blockchain: the funding and settlement transactions. In between these
two states, the two parties can exchange any number of commitment transactions
that are never seen by anyone else or submitted to the blockchain.

Figure 14-1 illustrates a payment channel between Bob and Alice, showing the fund‐
ing, commitment, and settlement transactions.

Figure 14-1. A payment channel between Bob and Alice, showing the funding, commit‐
ment, and settlement transactions.
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Simple Payment Channel Example
To explain state channels, we start with a very simple example. We demonstrate a
one-way channel, meaning that value is flowing in one direction only. We will also
start with the naive assumption that no one is trying to cheat to keep things simple.
Once we have the basic channel idea explained, we will then look at what it takes to
make it trustless so that neither party can cheat, even if they are trying to.

For this example we will assume two participants: Emma and Fabian. Fabian offers a
video streaming service that is billed by the second using a micropayment channel.
Fabian charges 0.01 millibit (0.00001 BTC) per second of video, equivalent to 36
millibits (0.036 BTC) per hour of video. Emma is a user who purchases this streaming
video service from Fabian. Figure 14-2 shows Emma buying the video streaming
service from Fabian using a payment channel.

Figure 14-2. Emma purchases streaming video from Fabian with a payment channel,
paying for each second of video.

In this example, Fabian and Emma are using special software that handles both the
payment channel and the video streaming. Emma is running the software in her
browser; Fabian is running it on a server. The software includes basic Bitcoin wallet
functionality and can create and sign Bitcoin transactions. Both the concept and the
term “payment channel” are completely hidden from the users. What they see is video
that is paid for by the second.

To set up the payment channel, Emma and Fabian establish a 2-of-2 multisignature
address, with each of them holding one of the keys. From Emma’s perspective,
the software in her browser presents a QR code with the address, and asks her to
submit a “deposit” for up to 1 hour of video. The address is then funded by Emma.
Emma’s transaction, paying to the multisignature address, is the funding or anchor
transaction for the payment channel.
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For this example, let’s say that Emma funds the channel with 36 millibits (0.036 BTC).
This will allow Emma to consume up to 1 hour of streaming video. The funding
transaction in this case sets the maximum amount that can be transmitted in this
channel, setting the channel capacity.

The funding transaction consumes one or more inputs from Emma’s wallet, sourcing
the funds. It creates one output with an amount of 36 millibits paid to the multi‐
signature 2-of-2 address controlled jointly between Emma and Fabian. It may have
additional outputs for change back to Emma’s wallet.

After the funding transaction is confirmed to a sufficient depth, Emma can start
streaming video. Emma’s software creates and signs a commitment transaction that
changes the channel balance to credit 0.01 millibit to Fabian’s address and refund
35.99 millibits back to Emma. The transaction signed by Emma consumes the 36
millibits output created by the funding transaction and creates two outputs: one for
her refund, the other for Fabian’s payment. The transaction is only partially signed—
it requires two signatures (2-of-2), but only has Emma’s signature. When Fabian’s
server receives this transaction, it adds the second signature (for the 2-of-2 input) and
returns it to Emma together with 1 second worth of video. Now both parties have a
fully signed commitment transaction that either can redeem, representing the correct
up-to-date balance of the channel. Neither party broadcasts this transaction to the
network.

In the next round, Emma’s software creates and signs another commitment transac‐
tion (commitment #2) that consumes the same 2-of-2 output from the funding trans‐
action. The second commitment transaction allocates one output of 0.02 millibits to
Fabian’s address and one output of 35.98 millibits back to Emma’s address. This new
transaction is payment for two cumulative seconds of video. Fabian’s software signs
and returns the second commitment transaction, together with another second of
video.

In this way, Emma’s software continues to send commitment transactions to Fabian’s
server in exchange for streaming video. The balance of the channel gradually accu‐
mulates in favor of Fabian as Emma consumes more seconds of video. Let’s say Emma
watches 600 seconds (10 minutes) of video, creating and signing 600 commitment
transactions. The last commitment transaction (#600) will have two outputs, splitting
the balance of the channel, 6 millibits to Fabian and 30 millibits to Emma.

Finally, Emma clicks “Stop” to stop streaming video. Either Fabian or Emma can
now transmit the final state transaction for settlement. This last transaction is the
settlement transaction and pays Fabian for all the video Emma consumed, refunding
the remainder of the funding transaction to Emma.

Figure 14-3 shows the channel between Emma and Fabian and the commitment
transactions that update the balance of the channel.
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In the end, only two transactions are recorded on the blockchain: the funding trans‐
action that established the channel and a settlement transaction that allocated the
final balance correctly between the two participants.

Figure 14-3. Emma’s payment channel with Fabian, showing the commitment transac‐
tions that update the balance of the channel.

Making Trustless Channels
The channel we just described works, but only if both parties cooperate, without
any failures or attempts to cheat. Let’s look at some of the scenarios that break this
channel and see what is needed to fix those:
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• Once the funding transaction happens, Emma needs Fabian’s signature to get•
any money back. If Fabian disappears, Emma’s funds are locked in a 2-of-2 and
effectively lost. This channel, as constructed, leads to a loss of funds if one of the
parties becomes unavailable before there is at least one commitment transaction
signed by both parties.

• While the channel is running, Emma can take any of the commitment transac‐•
tions Fabian has countersigned and transmit one to the blockchain. Why pay
for 600 seconds of video if she can transmit commitment transaction #1 and
only pay for 1 second of video? The channel fails because Emma can cheat by
broadcasting a prior commitment that is in her favor.

Both of these problems can be solved with timelocks—let’s look at how we could use
transaction-level timelocks.

Emma cannot risk funding a 2-of-2 multisig unless she has a guaranteed refund.
To solve this problem, Emma constructs the funding and refund transaction at the
same time. She signs the funding transaction but doesn’t transmit it to anyone. Emma
transmits only the refund transaction to Fabian and obtains his signature.

The refund transaction acts as the first commitment transaction, and its timelock
establishes the upper bound for the channel’s life. In this case, Emma could set the
lock time to 30 days or 4,320 blocks into the future. All subsequent commitment
transactions must have a shorter timelock so they can be redeemed before the refund
transaction.

Now that Emma has a fully signed refund transaction, she can confidently transmit
the signed funding transaction knowing that she can eventually, after the timelock
expires, redeem the refund transaction even if Fabian disappears.

Every commitment transaction the parties exchange during the life of the channel
will be timelocked into the future. But the delay will be slightly shorter for each
commitment, so the most recent commitment can be redeemed before the prior
commitment it invalidates. Because of the lock time, neither party can successfully
propagate any of the commitment transactions until their timelock expires. If all goes
well, they will cooperate and close the channel gracefully with a settlement transac‐
tion, making it unnecessary to transmit an intermediate commitment transaction. If
not, the most recent commitment transaction can be propagated to settle the account
and invalidate all prior commitment transactions.

For example, if commitment transaction #1 is timelocked to 4,320 blocks in the
future, then commitment transaction #2 is timelocked to 4,319 blocks in the future.
Commitment transaction #600 can be spent 600 blocks before commitment transac‐
tion #1 becomes valid.
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Figure 14-4 shows each commitment transaction setting a shorter timelock, allowing
it to be spent before the previous commitments become valid.

Figure 14-4. Each commitment sets a shorter timelock, allowing it to be spent before the
previous commitments become valid.

Each subsequent commitment transaction must have a shorter timelock so that it
may be broadcast before its predecessors and before the refund transaction. The
ability to broadcast a commitment earlier ensures it will be able to spend the funding
output and preclude any other commitment transaction from being redeemed by
spending the output. The guarantees offered by the Bitcoin blockchain, preventing
double-spends and enforcing timelocks, effectively allow each commitment transac‐
tion to invalidate its predecessors.

State channels use timelocks to enforce smart contracts across a time dimension. In
this example we saw how the time dimension guarantees that the most recent com‐
mitment transaction becomes valid before any earlier commitments. Thus, the most
recent commitment transaction can be transmitted, spending the inputs and invalid‐
ating prior commitment transactions. The enforcement of smart contracts with abso‐
lute timelocks protects against cheating by one of the parties. This implementation
needs nothing more than absolute transaction-level lock time. Next, we will see how
script-level timelocks, CHECKLOCKTIMEVERIFY and CHECKSEQUENCEVERIFY, can be used
to construct more flexible, useful, and sophisticated state channels.

Timelocks are not the only way to invalidate prior commitment transactions. In the
next sections we will see how a revocation key can be used to achieve the same result.
Timelocks are effective, but they have two distinct disadvantages. By establishing
a maximum timelock when the channel is first opened, they limit the lifetime of
the channel. Worse, they force channel implementations to strike a balance between
allowing long-lived channels and forcing one of the participants to wait a very long
time for a refund in case of premature closure. For example, if you allow the channel
to remain open for 30 days by setting the refund timelock to 30 days, if one of the
parties disappears immediately, the other party must wait 30 days for a refund. The
more distant the endpoint, the more distant the refund.
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The second problem is that since each subsequent commitment transaction must
decrement the timelock, there is an explicit limit on the number of commitment
transactions that can be exchanged between the parties. For example, a 30-day chan‐
nel, setting a timelock of 4,320 blocks into the future, can only accommodate 4,320
intermediate commitment transactions before it must be closed. There is a danger in
setting the timelock commitment transaction interval at 1 block. By setting the time‐
lock interval between commitment transactions to 1 block, a developer is creating a
very high burden for the channel participants who have to be vigilant, remain online
and watching, and be ready to transmit the right commitment transaction at any
time.

In the preceding example of a single-direction channel, it’s easy to eliminate the per-
commitment timelock. After Emma receives the signature on the timelocked refund
transaction from Fabian, no timelocks are placed on the commitment transactions.
Instead, Emma sends her signature on each commitment transaction to Fabian but
Fabian doesn’t send her any of his signatures on the commitment transactions. That
means only Fabian has both signatures for a commitment transaction, so only he can
broadcast one of those commitments. When Emma finishes streaming video, Fabian
will always prefer to broadcast the transaction that pays him the most—which will be
the latest state. This construction in called a Spillman-style payment channel, which
was first described and implemented in 2013, although they are only safe to use with
witness (segwit) transactions, which didn’t become available until 2017.

Now that we understand how timelocks can be used to invalidate prior commitments,
we can see the difference between closing the channel cooperatively and closing it
unilaterally by broadcasting a commitment transaction. All commitment transactions
in our prior example were timelocked, therefore broadcasting a commitment transac‐
tion will always involve waiting until the timelock has expired. But if the two parties
agree on what the final balance is and know they both hold commitment transactions
that will eventually make that balance a reality, they can construct a settlement
transaction without a timelock representing that same balance. In a cooperative close,
either party takes the most recent commitment transaction and builds a settlement
transaction that is identical in every way except that it omits the timelock. Both
parties can sign this settlement transaction knowing there is no way to cheat and get
a more favorable balance. By cooperatively signing and transmitting the settlement
transaction, they can close the channel and redeem their balance immediately. Worst
case, one of the parties can be petty, refuse to cooperate, and force the other party to
do a unilateral close with the most recent commitment transaction. If they do that,
they have to wait for their funds too.
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Asymmetric Revocable Commitments
Another way to handle the prior commitment states is to explicitly revoke them.
However, this is not easy to achieve. A key characteristic of Bitcoin is that once a
transaction is valid, it remains valid and does not expire. The only way to cancel
a transaction is to get a conflicting transaction confirmed. That’s why we used
timelocks in the simple payment channel example to ensure that more recent com‐
mitments could be spent before older commitments were valid. However, sequencing
commitments in time creates a number of constraints that make payment channels
difficult to use.

Even though a transaction cannot be canceled, it can be constructed in such a way as
to make it undesirable to use. The way we do that is by giving each party a revocation
key that can be used to punish the other party if they try to cheat. This mechanism for
revoking prior commitment transactions was first proposed as part of the LN.

To explain revocation keys, we will construct a more complex payment channel
between two exchanges run by Hitesh and Irene. Hitesh and Irene run Bitcoin
exchanges in India and the USA, respectively. Customers of Hitesh’s Indian exchange
often send payments to customers of Irene’s USA exchange and vice versa. Currently,
these transactions occur on the Bitcoin blockchain, but this means paying fees and
waiting several blocks for confirmations. Setting up a payment channel between the
exchanges will significantly reduce the cost and accelerate the transaction flow.

Hitesh and Irene start the channel by collaboratively constructing a funding transac‐
tion, each funding the channel with 5 bitcoin. Before they sign the funding transac‐
tion, they must sign the first set of commitments (called the refund) that assigns the
initial balance of 5 bitcoin for Hitesh and 5 bitcoin for Irene. The funding transaction
locks the channel state in a 2-of-2 multisig, just like in the example of a simple
channel.

The funding transaction may have one or more inputs from Hitesh (adding up to 5
bitcoins or more), and one or more inputs from Irene (adding up to 5 bitcoins or
more). The inputs have to slightly exceed the channel capacity in order to cover the
transaction fees. The transaction has one output that locks the 10 total bitcoins to a
2-of-2 multisig address controlled by both Hitesh and Irene. The funding transaction
may also have one or more outputs returning change to Hitesh and Irene if their
inputs exceeded their intended channel contribution. This is a single transaction with
inputs offered and signed by two parties. It has to be constructed in collaboration and
signed by each party before it is transmitted.

Now, instead of creating a single commitment transaction that both parties sign,
Hitesh and Irene create two different commitment transactions that are asymmetric.
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Hitesh has a commitment transaction with two outputs. The first output pays Irene
the 5 bitcoins she is owed immediately. The second output pays Hitesh the 5 bitcoins
he is owed, but only after a timelock of 1,000 blocks. The transaction outputs look
like this:

Input: 2-of-2 funding output, signed by Irene

Output 0 <5 bitcoins>:
    <Irene's Public Key> CHECKSIG

Output 1 <5 bitcoins>:
    <1000 blocks>
    CHECKSEQUENCEVERIFY
    DROP
    <Hitesh's Public Key> CHECKSIG

Irene has a different commitment transaction with two outputs. The first output
pays Hitesh the 5 bitcoins he is owed immediately. The second output pays Irene the
5 bitcoins she is owed but only after a timelock of 1,000 blocks. The commitment
transaction Irene holds (signed by Hitesh) looks like this:

Input: 2-of-2 funding output, signed by Hitesh

Output 0 <5 bitcoins>:
    <Hitesh's Public Key> CHECKSIG

Output 1 <5 bitcoins>:
    <1000 blocks>
    CHECKSEQUENCEVERIFY
    DROP
    <Irene's Public Key> CHECKSIG

This way, each party has a commitment transaction, spending the 2-of-2 funding
output. This input is signed by the other party. At any time the party holding the
transaction can also sign (completing the 2-of-2) and broadcast. However, if they
broadcast the commitment transaction, it pays the other party immediately, whereas
they have to wait for a timelock to expire. By imposing a delay on the redemption of
one of the outputs, we put each party at a slight disadvantage when they choose to
unilaterally broadcast a commitment transaction. But a time delay alone isn’t enough
to encourage fair conduct.

Figure 14-5 shows two asymmetric commitment transactions, where the output
paying the holder of the commitment is delayed.
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Figure 14-5. Two asymmetric commitment transactions with delayed payment for the
party holding the transaction.

Now we introduce the final element of this scheme: a revocation key that prevents
a cheater from broadcasting an expired commitment. The revocation key allows the
wronged party to punish the cheater by taking the entire balance of the channel.

The revocation key is composed of two secrets, each half generated independently
by each channel participant. It is similar to a 2-of-2 multisig, but constructed using
elliptic curve arithmetic, so that both parties know the revocation public key but each
party knows only half the revocation secret key.

In each round, both parties reveal their half of the revocation secret to the other party,
thereby giving the other party (who now has both halves) the means to claim the
penalty output if this revoked transaction is ever broadcast.

Each of the commitment transactions has a “delayed” output. The redemption script
for that output allows one party to redeem it after 1,000 blocks, or the other party
to redeem it if they have a revocation key, penalizing transmission of a revoked
commitment.

So when Hitesh creates a commitment transaction for Irene to sign, he makes the
second output payable to himself after 1,000 blocks or to the revocation public key (of
which he only knows half the secret). Hitesh constructs this transaction. He will only
reveal his half of the revocation secret to Irene when he is ready to move to a new
channel state and wants to revoke this commitment.
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The second output’s script looks like this:

Output 0 <5 bitcoins>:
    <Irene's Public Key> CHECKSIG

Output 1 <5 bitcoins>:
IF
    # Revocation penalty output
    <Revocation Public Key>
ELSE
    <1000 blocks>
    CHECKSEQUENCEVERIFY
    DROP
    <Hitesh's Public Key>
ENDIF
CHECKSIG

Irene can confidently sign this transaction since if transmitted, it will immediately
pay her what she is owed. Hitesh holds the transaction but knows that if he transmits
it in a unilateral channel closing, he will have to wait 1,000 blocks to get paid.

After the channel is advanced to the next state, Hitesh has to revoke this commitment
transaction before Irene will agree to sign any further commitment transactions. To
do that, all he has to do is send his half of the revocation key to Irene. Once Irene has
both halves of the revocation secret key for this commitment, she can sign a future
commitment with confidence. She knows that if Hitesh tries to cheat by publishing
the prior commitment, she can use the revocation key to redeem Hitesh’s delayed
output. If Hitesh cheats, Irene gets BOTH outputs. Meanwhile, Hitesh only has half
the revocation secret for that revocation public key and can’t redeem the output until
1,000 blocks. Irene will be able to redeem the output and punish Hitesh before the
1,000 blocks have elapsed.

The revocation protocol is bilateral, meaning that in each round, as the channel state
is advanced, the two parties exchange new commitments, exchange revocation secrets
for the previous commitments, and sign each other’s new commitment transactions.
After they accept a new state, they make the prior state impossible to use by giving
each other the necessary revocation secrets to punish any cheating.

Let’s look at an example of how it works. One of Irene’s customers wants to send
2 bitcoins to one of Hitesh’s customers. To transmit 2 bitcoins across the channel,
Hitesh and Irene must advance the channel state to reflect the new balance. They will
commit to a new state (state number 2) where the channel’s 10 bitcoins are split, 7
bitcoins to Hitesh and 3 bitcoins to Irene. To advance the state of the channel, they
will each create new commitment transactions reflecting the new channel balance.
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As before, these commitment transactions are asymmetric so the commitment trans‐
action each party holds forces them to wait if they redeem it. Crucially, before signing
new commitment transactions, they must first exchange revocation keys to invalidate
any outdated commitments. In this particular case, Hitesh’s interests are aligned with
the real state of the channel and therefore he has no reason to broadcast a prior state.
However, for Irene, state number 1 leaves her with a higher balance than state 2.
When Irene gives Hitesh the revocation key for her prior commitment transaction
(state number 1), she is effectively revoking her ability to profit from regressing
the channel to a prior state because with the revocation key, Hitesh can redeem
both outputs of the prior commitment transaction without delay. Meaning if Irene
broadcasts the prior state, Hitesh can exercise his right to take all of the outputs.

Importantly, the revocation doesn’t happen automatically. While Hitesh has the abil‐
ity to punish Irene for cheating, he has to watch the blockchain diligently for signs of
cheating. If he sees a prior commitment transaction broadcast, he has 1,000 blocks to
take action and use the revocation key to thwart Irene’s cheating and punish her by
taking the entire balance, all 10 bitcoins.

Asymmetric revocable commitments with relative time locks (CSV) are a much bet‐
ter way to implement payment channels and a very significant innovation in this
technology. With this construct, the channel can remain open indefinitely and can
have billions of intermediate commitment transactions. In implementations of LN,
the commitment state is identified by a 48-bit index, allowing more than 281 trillion
(2.8 × 1014) state transitions in any single channel.

Hash Time Lock Contracts (HTLC)
Payment channels can be further extended with a special type of smart contract that
allows the participants to commit funds to a redeemable secret, with an expiration
time. This feature is called a hash time lock contract, or HTLC, and is used in both
bidirectional and routed payment channels.

Let’s first explain the “hash” part of the HTLC. To create an HTLC, the intended
recipient of the payment will first create a secret R. They then calculate the hash of
this secret H:

H = Hasℎ R

This produces a hash H that can be included in an output’s script. Whoever knows
the secret can use it to redeem the output. The secret R is also referred to as a
preimage to the hash function. The preimage is just the data that is used as input to a
hash function.
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The second part of an HTLC is the “time lock” component. If the secret is not
revealed, the payer of the HTLC can get a “refund” after some time. This is achieved
with an absolute timelock using CHECKLOCKTIMEVERIFY.

The script implementing an HTLC might look like this:

IF
    # Payment if you have the secret R
    HASH160 <H> EQUALVERIFY
    <Receiver Public Key> CHECKSIG
ELSE
    # Refund after timeout.
    <lock time> CHECKLOCKTIMEVERIFY DROP
    <Payer Public Key> CHECKSIG
ENDIF

Anyone who knows the secret R, which when hashed equals to H, can redeem this
output by exercising the first clause of the IF flow.

If the secret is not revealed and the HTLC claimed after a certain number of blocks,
the payer can claim a refund using the second clause in the IF flow.

This is a basic implementation of an HTLC. This type of HTLC can be redeemed by
anyone who has the secret R. An HTLC can take many different forms with slight
variations to the script. For example, adding a CHECKSIG operator and a public key in
the first clause restricts redemption of the hash to a particular recipient, who must
also know the secret R.

Routed Payment Channels (Lightning Network)
The Lightning Network (LN) is a proposed routed network of bidirectional payment
channels connected end-to-end. A network like this can allow any participant to
route a payment from channel to channel without trusting any of the intermediaries.
The LN was first described by Joseph Poon and Thadeus Dryja in February 2015,
building on the concept of payment channels as proposed and elaborated upon by
many others.

“Lightning Network” refers to a specific design for a routed payment channel net‐
work, which has now been implemented by at least five different open source teams.
The independent implementations are coordinated by a set of interoperability stand‐
ards described in the Basics of Lightning Technology (BOLT) repository.
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Basic Lightning Network Example
Let’s see how this works.

In this example, we have five participants: Alice, Bob, Carol, Diana, and Eric. These
five participants have opened payment channels with each other, in pairs. Alice has
a payment channel with Bob. Bob is connected to Carol, Carol to Diana, and Diana
to Eric. For simplicity let’s assume each channel is funded with 2 bitcoins by each
participant, for a total capacity of 4 bitcoins in each channel.

Figure 14-6 shows five participants in an LN, connected by bidirectional payment
channels that can be linked to make a payment from Alice to Eric (see “Routed
Payment Channels (Lightning Network)” on page 332).

Figure 14-6. A series of bidirectional payment channels linked to form an LN that can
route a payment from Alice to Eric.

Alice wants to pay Eric 1 bitcoin. However, Alice is not connected to Eric by a
payment channel. Creating a payment channel requires a funding transaction, which
must be committed to the Bitcoin blockchain. Alice does not want to open a new pay‐
ment channel and commit more of her funds. Is there a way to pay Eric indirectly?

Figure 14-7 shows the step-by-step process of routing a payment from Alice to Eric,
through a series of HTLC commitments on the payment channels connecting the
participants.
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Figure 14-7. Step-by-step payment routing through an LN.

Alice is running an LN node that is keeping track of her payment channel to Bob and
has the ability to discover routes between payment channels. Alice’s LN node also has
the ability to connect over the internet to Eric’s LN node. Eric’s LN node creates a
secret R using a random number generator. Eric’s node does not reveal this secret to
anyone. Instead, Eric’s node calculates a hash H of the secret R and transmits this hash
to Alice’s node in the form of an invoice (see Figure 14-7, step 1).

Now Alice’s LN node constructs a route between Alice’s LN node and Eric’s LN node.
The pathfinding algorithm used will be examined in more detail later, but for now
let’s assume that Alice’s node can find an efficient route.

Alice’s node then constructs an HTLC, payable to the hash H, with a 10-block refund
timeout (current block + 10), for an amount of 1.003 bitcoins (see Figure 14-7, step
2). The extra 0.003 will be used to compensate the intermediate nodes for their
participation in this payment route. Alice offers this HTLC to Bob, deducting 1.003
bitcoins from her channel balance with Bob and committing it to the HTLC. The
HTLC has the following meaning: “Alice is committing 1.003 bitcoins of her channel
balance to be paid to Bob if Bob knows the secret, or refunded back to Alice’s balance
if 10 blocks elapse.” The channel balance between Alice and Bob is now expressed
by commitment transactions with three outputs: 2 bitcoins balance to Bob, 0.997
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bitcoins balance to Alice, 1.003 bitcoins committed in Alice’s HTLC. Alice’s balance is
reduced by the amount committed to the HTLC.

Bob now has a commitment that if he is able to get the secret R within the next
10 blocks, he can claim the 1.003 bitcoins locked by Alice. With this commitment
in hand, Bob’s node constructs an HTLC on his payment channel with Carol. Bob’s
HTLC commits 1.002 bitcoins to hash H for 9 blocks, which Carol can redeem if she
has secret R (see Figure 14-7 step 3). Bob knows that if Carol can claim his HTLC,
she has to produce R. If Bob has R in nine blocks, he can use it to claim Alice’s
HTLC to him. He also makes 0.001 bitcoins for committing his channel balance for
nine blocks. If Carol is unable to claim his HTLC and he is unable to claim Alice’s
HTLC, everything reverts back to the prior channel balances and no one is at a loss.
The channel balance between Bob and Carol is now: 2 to Carol, 0.998 to Bob, 1.002
committed by Bob to the HTLC.

Carol now has a commitment that if she gets R within the next nine blocks, she can
claim 1.002 bitcoins locked by Bob. Now she can make an HTLC commitment on
her channel with Diana. She commits an HTLC of 1.001 bitcoins to hash H, for eight
blocks, which Diana can redeem if she has secret R (see Figure 14-7, step 4). From
Carol’s perspective, if this works she is 0.001 bitcoins better off and if it doesn’t she
loses nothing. Her HTLC to Diana is only viable if R is revealed, at which point she
can claim the HTLC from Bob. The channel balance between Carol and Diana is
now: 2 to Diana, 0.999 to Carol, 1.001 committed by Carol to the HTLC.

Finally, Diana can offer an HTLC to Eric, committing 1 bitcoin for seven blocks to
hash H (see Figure 14-7, step 5). The channel balance between Diana and Eric is now:
2 to Eric, 1 to Diana, 1 committed by Diana to the HTLC.

However, at this hop in the route, Eric has secret R. He can therefore claim the HTLC
offered by Diana. He sends R to Diana and claims the 1 bitcoin, adding it to his
channel balance (see Figure 14-7, step 6). The channel balance is now: 1 to Diana, 3
to Eric.

Now, Diana has secret R. Therefore, she can now claim the HTLC from Carol.
Diana transmits R to Carol and adds the 1.001 bitcoins to her channel balance (see
Figure 14-7, step 7). Now the channel balance between Carol and Diana is: 0.999
to Carol, 3.001 to Diana. Diana has “earned” 0.001 for participating in this payment
route.

Flowing back through the route, the secret R allows each participant to claim the out‐
standing HTLCs. Carol claims 1.002 from Bob, setting the balance on their channel
to: 0.998 to Bob, 3.002 to Carol (see Figure 14-7, step 8). Finally, Bob claims the
HTLC from Alice (see Figure 14-7, step 9). Their channel balance is updated as: 0.997
to Alice, 3.003 to Bob.

Routed Payment Channels (Lightning Network) | 335



Alice has paid Eric 1 bitcoin without opening a channel to Eric. None of the inter‐
mediate parties in the payment route had to trust each other. For the short-term
commitment of their funds in the channel they are able to earn a small fee, with
the only risk being a small delay in refund if the channel was closed or the routed
payment failed.

Lightning Network Transport and Pathfinding
All communications between LN nodes are encrypted point-to-point. In addition,
nodes have a long-term public key that they use as an identifier and to authenticate
each other.

Whenever a node wishes to send a payment to another node, it must first construct
a path through the network by connecting payment channels with sufficient capacity.
Nodes advertise routing information, including what channels they have open, how
much capacity each channel has, and what fees they charge to route payments. The
routing information can be shared in a variety of ways, and different pathfinding
protocols have emerged as LN technology has advanced. Current implementations of
route discovery use a P2P model where nodes propagate channel announcements to
their peers in a “flooding” model, similar to how Bitcoin propagates transactions.

In our previous example, Alice’s node uses one of these route discovery mechanisms to find
one or more paths connecting her node to Eric’s node. Once Alice’s node has constructed a
path, she will initialize that path through the network by propagating a series of encrypted
and nested instructions to connect each of the adjacent payment channels.

Importantly, this path is only known to Alice’s node. All other participants in the
payment route see only the adjacent nodes. From Carol’s perspective, this looks like a
payment from Bob to Diana. Carol does not know that Bob is actually relaying a payment
from Alice. She also doesn’t know that Diana will be relaying a payment to Eric.

This is a critical feature of the LN because it ensures privacy of payments and
makes it difficult to apply surveillance, censorship, or blacklists. But how does Alice
establish this payment path without revealing anything to the intermediary nodes?

The LN implements an onion-routed protocol based on a scheme called Sphinx. This
routing protocol ensures that a payment sender can construct and communicate a
path through the LN such that:

• Intermediate nodes can verify and decrypt their portion of route information
and find the next hop.

• Other than the previous and next hops, they cannot learn about any other nodes
that are part of the path.

• They cannot identify the length of the payment path or their own position in that
path.
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• Each part of the path is encrypted in such a way that a network-level attacker
cannot associate the packets from different parts of the path to each other.

• Unlike Tor (an onion-routed anonymization protocol on the internet), there are no•
“exit nodes” that can be placed under surveillance. The payments do not need to be
transmitted to the Bitcoin blockchain; the nodes just update channel balances.

Using this onion-routed protocol, Alice wraps each element of the path in a layer of
encryption, starting with the end and working backward. She encrypts a message to
Eric with Eric’s public key. This message is wrapped in a message encrypted to Diana,
identifying Eric as the next recipient. The message to Diana is wrapped in a message
encrypted to Carol’s public key and identifying Diana as the next recipient. The
message to Carol is encrypted to Bob’s key. Thus, Alice has constructed this encrypted
multilayer “onion” of messages. She sends this to Bob, who can only decrypt and
unwrap the outer layer. Inside, Bob finds a message addressed to Carol that he can
forward to Carol but cannot decipher himself. Following the path, the messages get
forwarded, decrypted, forwarded, etc., all the way to Eric. Each participant knows
only the previous and next node in each hop.

Each element of the path contains information on the HTLC that must be extended
to the next hop, the amount that is being sent, the fee to include, and the CLTV lock
time (in blocks) expiration of the HTLC. As the route information propagates, the
nodes make HTLC commitments forward to the next hop.

At this point, you might be wondering how it is possible that the nodes do not know
the length of the path and their position in that path. After all, they receive a message
and forward it to the next hop. Doesn’t it get shorter, allowing them to deduce the
path size and their position? To prevent this, the packet size is fixed and padded with
random data. Each node sees the next hop and a fixed-length encrypted message to
forward. Only the final recipient sees that there is no next hop. To everyone else it
seems as if there are always more hops to go.

Lightning Network Benefits
An LN is a second-layer routing technology. It can be applied to any blockchain that
supports some basic capabilities, such as multisignature transactions, timelocks, and
basic smart contracts.

LN is layered on top of the Bitcoin network, giving Bitcoin a significant increase in
capacity, privacy, granularity, and speed, without sacrificing the principles of trustless
operation without intermediaries:

Privacy
LN payments are much more private than payments on the Bitcoin blockchain,
as they are not public. While participants in a route can see payments propagated
across their channels, they do not know the sender or recipient.
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Fungibility
An LN makes it much more difficult to apply surveillance and blacklists on
Bitcoin, increasing the fungibility of the currency.

Speed
Bitcoin transactions using LN are settled in milliseconds, rather than minutes or
hours, as HTLCs are cleared without committing transactions to a block.

Granularity
An LN can enable payments at least as small as the Bitcoin “dust” limit, perhaps
even smaller.

Capacity
An LN increases the capacity of the Bitcoin system by several orders of magni‐
tude. The upper bound to the number of payments per second that can be routed
over a Lightning Network depends only on the capacity and speed of each node.

Trustless Operation
An LN uses Bitcoin transactions between nodes that operate as peers without
trusting each other. Thus, an LN preserves the principles of the Bitcoin system,
while expanding its operating parameters significantly.

We have examined just a few of the emerging applications that can be built using the
Bitcoin blockchain as a trust platform. These applications expand the scope of Bitcoin
beyond payments.

Now that you have reached the end of this book, what will you do with the knowledge
you have gained? Millions of people, perhaps billions, know the name “Bitcoin,” but
only a small percentage of them know as much about how Bitcoin works as you now
do. That knowledge is precious. Even more precious are the people, such as yourself,
who are so interested in Bitcoin that you are willing to read several hundred pages
about it.

If you haven’t already begun doing so, please consider contributing to Bitcoin in
some way. You can run a full node to validate the Bitcoin payments you receive,
build applications that make it easier for other people to use Bitcoin, or help educate
other people about Bitcoin and its potential. You can even take the rare step of
contributing to open source Bitcoin infrastructure software, such as Bitcoin Core,
carefully working with a small number of incredibly smart people to build tools that
no one will ever pay for but that billions may one day depend upon.

Whatever your Bitcoin journey, we thank you for making Mastering Bitcoin a part
of it.
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APPENDIX A

The Bitcoin Whitepaper
by Satoshi Nakamoto

This is the original whitepaper, reproduced in its entirety exactly as
it was published by Satoshi Nakamoto in October 2008.

Bitcoin - A Peer-to-Peer Electronic Cash System
Satoshi Nakamoto

satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online pay‐
ments to be sent directly from one party to another without going through a financial
institution. Digital signatures provide part of the solution, but the main benefits
are lost if a trusted third party is still required to prevent double-spending. We
propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As long
as a majority of CPU power is controlled by nodes that are not cooperating to attack
the network, they’ll generate the longest chain and outpace attackers. The network
itself requires minimal structure. Messages are broadcast on a best effort basis, and
nodes can leave and rejoin the network at will, accepting the longest proof-of-work
chain as proof of what happened while they were gone.
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Introduction
Commerce on the Internet has come to rely almost exclusively on financial insti‐
tutions serving as trusted third parties to process electronic payments. While the
system works well enough for most transactions, it still suffers from the inherent
weaknesses of the trust based model. Completely non-reversible transactions are not
really possible, since financial institutions cannot avoid mediating disputes. The cost
of mediation increases transaction costs, limiting the minimum practical transaction
size and cutting off the possibility for small casual transactions, and there is a broader
cost in the loss of ability to make non-reversible payments for nonreversible services.
With the possibility of reversal, the need for trust spreads. Merchants must be wary
of their customers, hassling them for more information than they would otherwise
need. A certain percentage of fraud is accepted as unavoidable. These costs and
payment uncertainties can be avoided in person by using physical currency, but
no mechanism exists to make payments over a communications channel without a
trusted party.

What is needed is an electronic payment system based on cryptographic proof
instead of trust, allowing any two willing parties to transact directly with each other
without the need for a trusted third party. Transactions that are computationally
impractical to reverse would protect sellers from fraud, and routine escrow mecha‐
nisms could easily be implemented to protect buyers. In this paper, we propose a
solution to the double-spending problem using a peer-to-peer distributed timestamp
server to generate computational proof of the chronological order of transactions.
The system is secure as long as honest nodes collectively control more CPU power
than any cooperating group of attacker nodes.

Transactions
We define an electronic coin as a chain of digital signatures. Each owner transfers the
coin to the next by digitally signing a hash of the previous transaction and the public
key of the next owner and adding these to the end of the coin. A payee can verify the
signatures to verify the chain of ownership.
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The problem of course is the payee can’t verify that one of the owners did not
double-spend the coin. A common solution is to introduce a trusted central authority,
or mint, that checks every transaction for double spending. After each transaction,
the coin must be returned to the mint to issue a new coin, and only coins issued
directly from the mint are trusted not to be double-spent. The problem with this
solution is that the fate of the entire money system depends on the company running
the mint, with every transaction having to go through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any
earlier transactions. For our purposes, the earliest transaction is the one that counts,
so we don’t care about later attempts to double-spend. The only way to confirm the
absence of a transaction is to be aware of all transactions. In the mint based model,
the mint was aware of all transactions and decided which arrived first. To accomplish
this without a trusted party, transactions must be publicly announced [1], and we
need a system for participants to agree on a single history of the order in which
they were received. The payee needs proof that at the time of each transaction, the
majority of nodes agreed it was the first received.

Timestamp Server
The solution we propose begins with a timestamp server. A timestamp server works
by taking a hash of a block of items to be timestamped and widely publishing the
hash, such as in a newspaper or Usenet post [2-5]. The timestamp proves that the
data must have existed at the time, obviously, in order to get into the hash. Each
timestamp includes the previous timestamp in its hash, forming a chain, with each
additional timestamp reinforcing the ones before it.
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Proof-of-Work
To implement a distributed timestamp server on a peer-to-peer basis, we will need
to use a proof-of-work system similar to Adam Back’s Hashcash [6], rather than
newspaper or Usenet posts. The proof-of-work involves scanning for a value that
when hashed, such as with SHA-256, the hash begins with a number of zero bits. The
average work required is exponential in the number of zero bits required and can be
verified by executing a single hash. For our timestamp network, we implement the
proof-of-work by incrementing a nonce in the block until a value is found that gives
the block’s hash the required zero bits. Once the CPU effort has been expended to
make it satisfy the proof-of-work, the block cannot be changed without redoing the
work. As later blocks are chained after it, the work to change the block would include
redoing all the blocks after it.

The proof-of-work also solves the problem of determining representation in majority
decision making. If the majority were based on one-IP-address-one-vote, it could be
subverted by anyone able to allocate many IPs. Proof-of-work is essentially one-CPU-
one-vote. The majority decision is represented by the longest chain, which has the
greatest proof-of-work effort invested in it. If a majority of CPU power is controlled
by honest nodes, the honest chain will grow the fastest and outpace any competing
chains. To modify a past block, an attacker would have to redo the proof-of-work of
the block and all blocks after it and then catch up with and surpass the work of the
honest nodes. We will show later that the probability of a slower attacker catching up
diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest in running nodes
over time, the proof-of-work difficulty is determined by a moving average targeting
an average number of blocks per hour. If they’re generated too fast, the difficulty
increases.
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Network
The steps to run the network are as follows:

1. New transactions are broadcast to all nodes.1.
2. Each node collects new transactions into a block.2.
3. Each node works on finding a difficult proof-of-work for its block.3.
4. When a node finds a proof-of-work, it broadcasts the block to all nodes.4.
5. Nodes accept the block only if all transactions in it are valid and not already5.

spent.
6. Nodes express their acceptance of the block by working on creating the next6.

block in the chain, using the hash of the accepted block as the previous hash.

Nodes always consider the longest chain to be the correct one and will keep working
on extending it. If two nodes broadcast different versions of the next block simulta‐
neously, some nodes may receive one or the other first. In that case, they work on
the first one they received, but save the other branch in case it becomes longer. The
tie will be broken when the next proof-of-work is found and one branch becomes
longer; the nodes that were working on the other branch will then switch to the
longer one.

New transaction broadcasts do not necessarily need to reach all nodes. As long as
they reach many nodes, they will get into a block before long. Block broadcasts are
also tolerant of dropped messages. If a node does not receive a block, it will request it
when it receives the next block and realizes it missed one.

Incentive
By convention, the first transaction in a block is a special transaction that starts a
new coin owned by the creator of the block. This adds an incentive for nodes to
support the network, and provides a way to initially distribute coins into circulation,
since there is no central authority to issue them. The steady addition of a constant of
amount of new coins is analogous to gold miners expending resources to add gold to
circulation. In our case, it is CPU time and electricity that is expended.

The incentive can also be funded with transaction fees. If the output value of a
transaction is less than its input value, the difference is a transaction fee that is added
to the incentive value of the block containing the transaction. Once a predetermined
number of coins have entered circulation, the incentive can transition entirely to
transaction fees and be completely inflation free.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able
to assemble more CPU power than all the honest nodes, he would have to choose
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between using it to defraud people by stealing back his payments, or using it to
generate new coins. He ought to find it more profitable to play by the rules, such
rules that favour him with more new coins than everyone else combined, than to
undermine the system and the validity of his own wealth.

Reclaiming Disk Space
Once (((“disk space”, “reclaiming”)))(((“reclaiming”, “disk space”)))(((“blocks”,
“reclaiming disk space”)))the latest transaction in a coin is buried under enough
blocks, the spent transactions before it can be discarded to save disk space. To
facilitate this without breaking the block’s hash, transactions are hashed in a Merkle
Tree [7] [2] [5], with only the root included in the block’s hash. Old blocks can then
be compacted by stubbing off branches of the tree. The interior hashes do not need to
be stored.

A block header with no transactions would be about 80 bytes. If we suppose blocks
are generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With
computer systems typically selling with 2GB of RAM as of 2008, and Moore’s Law
predicting current growth of 1.2GB per year, storage should not be a problem even if
the block headers must be kept in memory.

Simplified Payment Verification
It is possible to verify payments without running a full network node. A user only
needs to keep a copy of the block headers of the longest proof-of-work chain, which
he can get by querying network nodes until he’s convinced he has the longest chain,
and obtain the Merkle branch linking the transaction to the block it’s timestamped in.
He can’t check the transaction for himself, but by linking it to a place in the chain, he

344 | Appendix A: The Bitcoin Whitepaper by Satoshi Nakamoto



can see that a network node has accepted it, and blocks added after it further confirm
the network has accepted it.

As such, the verification is reliable as long as honest nodes control the network,
but is more vulnerable if the network is overpowered by an attacker. While network
nodes can verify transactions for themselves, the simplified method can be fooled
by an attacker’s fabricated transactions for as long as the attacker can continue to
overpower the network. One strategy to protect against this would be to accept alerts
from network nodes when they detect an invalid block, prompting the user’s software
to download the full block and alerted transactions to confirm the inconsistency.
Businesses that receive frequent payments will probably still want to run their own
nodes for more independent security and quicker verification.

Combining and Splitting Value
Although it would be possible to handle coins individually, it would be unwieldy to
make a separate transaction for every cent in a transfer. To allow value to be split and
combined, transactions contain multiple inputs and outputs. Normally there will be
either a single input from a larger previous transaction or multiple inputs combining
smaller amounts, and at most two outputs: one for the payment, and one returning
the change, if any, back to the sender.
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It should be noted that fan-out, where a transaction depends on several transactions,
and those transactions depend on many more, is not a problem here. There is never
the need to extract a complete standalone copy of a transaction’s history.

Privacy
The traditional banking model achieves a level of privacy by limiting access to
information to the parties involved and the trusted third party. The necessity to
announce all transactions publicly precludes this method, but privacy can still be
maintained by breaking the flow of information in another place: by keeping public
keys anonymous. The public can see that someone is sending an amount to someone
else, but without information linking the transaction to anyone. This is similar to
the level of information released by stock exchanges, where the time and size of
individual trades, the “tape”, is made public, but without telling who the parties were.

As an additional firewall, a new key pair should be used for each transaction to keep
them from being linked to a common owner. Some linking is still unavoidable with
multi-input transactions, which necessarily reveal that their inputs were owned by the
same owner. The risk is that if the owner of a key is revealed, linking could reveal
other transactions that belonged to the same owner.

Calculations
We consider the scenario of an attacker trying to generate an alternate chain faster
than the honest chain. Even if this is accomplished, it does not throw the system
open to arbitrary changes, such as creating value out of thin air or taking money that
never belonged to the attacker. Nodes are not going to accept an invalid transaction
as payment, and honest nodes will never accept a block containing them. An attacker
can only try to change one of his own transactions to take back money he recently
spent.

The race between the honest chain and an attacker chain can be characterized as a
Binomial Random Walk. The success event is the honest chain being extended by
one block, increasing its lead by +1, and the failure event is the attacker’s chain being
extended by one block, reducing the gap by -1.
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The probability of an attacker catching up from a given deficit is analogous to a
(((“Gambler’s Ruin problem”)))Gambler’s Ruin problem. Suppose a gambler with
unlimited credit starts at a deficit and plays potentially an infinite number of trials to
try to reach breakeven. We can calculate the probability he ever reaches breakeven, or
that an attacker ever catches up with the honest chain, as follows [8]:

p = probability an honest node finds the next block

q = probability the attacker finds the next block

qz = probability the attacker will ever catch up from z blocks behind

qz =
1 if p ≤ q

(q p)z if p > q

Given our assumption that p > q, the probability drops exponentially as the number
of blocks the attacker has to catch up with increases. With the odds against him, if he
doesn’t make a lucky lunge forward early on, his chances become vanishingly small as
he falls further behind.

We now consider how long the recipient of a new transaction needs to wait before
being sufficiently certain the sender can’t change the transaction. We assume the
sender is an attacker who wants to make the recipient believe he paid him for a while,
then switch it to pay back to himself after some time has passed. The receiver will be
alerted when that happens, but the sender hopes it will be too late.

The receiver generates a new key pair and gives the public key to the sender shortly
before signing. This prevents the sender from preparing a chain of blocks ahead of
time by working on it continuously until he is lucky enough to get far enough ahead,
then executing the transaction at that moment. Once the transaction is sent, the
dishonest sender starts working in secret on a parallel chain containing an alternate
version of his transaction.

The recipient waits until the transaction has been added to a block and z blocks have
been linked after it. He doesn’t know the exact amount of progress the attacker has
made, but assuming the honest blocks took the average expected time per block, the
attacker’s potential progress will be a Poisson distribution with expected value:

λ = z q
p

To get the probability the attacker could still catch up now, we multiply the Poisson
density for each amount of progress he could have made by the probability he could
catch up from that point:
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∑
k = 0

∞ λ
k
e−λ

k ! ⋅
(q p)(z − k) if k ≤ z

1 if k > z

Rearranging to avoid summing the infinite tail of the distribution…

1 − ∑
k = 0

z λ
k
e−λ

k ! 1 − (q p)(z − k)

Converting to C code…

#include <math.h>
double AttackerSuccessProbability(double q, int z)
{
    double p = 1.0 - q;
    double lambda = z * (q / p);
    double sum = 1.0;
    int i, k;
    for (k = 0; k <= z; k++)
    {
        double poisson = exp(-lambda);
        for (i = 1; i <= k; i++)
            poisson *= lambda / i;
        sum -= poisson * (1 - pow(q / p, z - k));
    }
    return sum;
}

Running some results, we can see the probability drop off exponentially with z.

q=0.1
z=0 P=1.0000000
z=1 P=0.2045873
z=2 P=0.0509779
z=3 P=0.0131722
z=4 P=0.0034552
z=5 P=0.0009137
z=6 P=0.0002428
z=7 P=0.0000647
z=8 P=0.0000173
z=9 P=0.0000046
z=10 P=0.0000012

q=0.3
z=0 P=1.0000000
z=5 P=0.1773523
z=10 P=0.0416605
z=15 P=0.0101008
z=20 P=0.0024804
z=25 P=0.0006132
z=30 P=0.0001522
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z=35 P=0.0000379
z=40 P=0.0000095
z=45 P=0.0000024
z=50 P=0.0000006

Solving for P less than 0.1%…

P < 0.001
q=0.10 z=5
q=0.15 z=8
q=0.20 z=11
q=0.25 z=15
q=0.30 z=24
q=0.35 z=41
q=0.40 z=89
q=0.45 z=340

Conclusion
We have proposed a system for electronic transactions without relying on trust.
We started with the usual framework of coins made from digital signatures, which
provides strong control of ownership, but is incomplete without a way to prevent
double-spending. To solve this, we proposed a peer-to-peer network using proof-of-
work to record a public history of transactions that quickly becomes computationally
impractical for an attacker to change if honest nodes control a majority of CPU
power. The network is robust in its unstructured simplicity. Nodes work all at once
with little coordination. They do not need to be identified, since messages are not
routed to any particular place and only need to be delivered on a best effort basis.
Nodes can leave and rejoin the network at will, accepting the proof-of-work chain
as proof of what happened while they were gone. They vote with their CPU power,
expressing their acceptance of valid blocks by working on extending them and reject‐
ing invalid blocks by refusing to work on them. Any needed rules and incentives can
be enforced with this consensus mechanism.
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License
This whitepaper was published in October 2008 by Satoshi Nakamoto. It was later
(2009) added as supporting documentation to the bitcoin software and carries the
same MIT license. It has been reproduced in this book, without modification other
than formatting, under the terms of the MIT license:

The MIT License (MIT) Copyright (c) 2008 Satoshi Nakamoto

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN‐
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.
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APPENDIX B

Errata to the Bitcoin Whitepaper

This appendix contains a description of known problems in Satoshi Nakamoto’s
paper, “Bitcoin: A Peer-to-Peer Electronic Cash System,” as well as notes on terminol‐
ogy changes and how Bitcoin’s implementation differs from that described in the
paper.

This document was originally published by a coauthor of this book in 2016; it is
reproduced here with updates. The names of sections in this errata correspond to the
names of the sections in Nakamoto’s original paper.

Abstract
“The longest chain not only serves as proof of the sequence of events witnessed, but
proof that it came from the largest pool of CPU power.”

• Implementation detail: If each link in the chain (called “blocks” in Bitcoin) was•
built using the same amount of proof of work (PoW), the longest chain would be
the one backed by the largest pool of computational power. However, Bitcoin was
implemented in such a way that the amount of PoW can vary between blocks, so
it became important not to check for the “the longest chain” but rather “the chain
demonstrating the most PoW”; this is often shortened to “most-work chain.”
The change from checking for the longest chain to checking for the most-work
chain occurred in July 2010, long after Bitcoin’s initial release:

-    if (pindexNew->nHeight > nBestHeight)
+    if (pindexNew->bnChainWork > bnBestChainWork)
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• Terminology change: General CPUs were used to generate the PoW for the•
earliest Bitcoin blocks, but PoW generation today is mostly performed by special‐
ist Application Specific Integrated Circuits (ASICs), so instead of saying “CPU
power” it is perhaps more correct to say “computational power” or, simply, “hash
rate” for the hashing used in generating the PoW.

“As long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they’ll generate the longest chain and outpace attackers.”

• Terminology change: The term “nodes” today is used to refer to full validation•
nodes, which are programs that enforce all the rules of the system. Programs
(and hardware) that extend the chain today are called “miners” based on Naka‐
moto’s analogy to gold miners in section 6 of the paper. Nakamoto expected all
miners to be nodes but the software he released did not require all nodes to be
miners. In the original software, a simple menu item in the node GUI allowed
toggling the mining function on or off.
Today it is the case that the overwhelming number of nodes are not miners and
that many individuals who own mining hardware do not use it with their own
nodes (and even those that do mine with their own nodes often mine for short
periods of time on top of newly discovered blocks without ensuring their node
considers the new block valid). The early parts of the paper where “nodes” is
mostly used without modification refer to mining using a full validation node;
the later parts of the paper which refer to “network nodes” is mainly about what
nodes can do even if they aren’t mining.

• Post-publication discovery: When a new block is produced, the miner who•
produces that block can begin working on its sequel immediately but all other
miners are unaware of the new block and cannot begin working on it until it has
propagated across the network to them. This gives miners who produce many
blocks an edge over miners who produce fewer blocks, and this can be exploited
in what’s known as the selfish mining attack to allow an attacker with around
30% of total network hash rate to make other miners less profitable, perhaps
driving them into following the attacking miner’s policy. So instead of saying “a
majority of CPU power is controlled by nodes that are not cooperating to attack
the network,” it is perhaps more correct to say “as long as nodes cooperating to
attack the network control less than about 30% of the network.”

Transactions
“We define an electronic coin as a chain of digital signatures. Each owner transfers the
coin to the next by digitally signing a hash of the previous transaction and the public
key of the next owner and adding these to the end of the coin.”
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• Implementation detail: Bitcoin implements a more general version of this sys‐•
tem where digital signatures are not used directly but rather a “deterministic
expression” is used instead. Just as a signature that matches a known public key
can be used to enable a payment, the data that satisfies a known expression
can also enable a payment. Generically, the expression that must be satisfied
in Bitcoin in order to spend a coin is known as an “encumbrance.” Almost all
encumbrances in Bitcoin to date require providing at least one signature. So
instead of saying “a chain of digital signatures,” it is more correct to say “a chain
of encumbrances.” Given that transactions often have more than one input and
more than one output, the structure is not very chain-like; it’s more accurately
described as a directed acyclic graph (DAG).

Proof of Work
“…we implement the proof-of-work by incrementing a nonce in the block until a value
is found that gives the block’s hash the required zero bits.”

• Implementation detail: Adam Back’s Hashcash implementation requires finding•
a hash with the required number of leading zero bits. Bitcoin treats the hash as
an integer and requires that it be less than a specified integer, which effectively
allows a fractional number of bits to be specified.

“Proof-of-work is essentially one-CPU-one-vote.”

• Important note: The vote here is not on the rules of the system but merely on•
the ordering of the transactions in order to provide assurances that an “electronic
coin” cannot be easily double spent. This is described in more detail in section 11
of the paper where it says, “We consider the scenario of an attacker trying to gen‐
erate an alternate chain faster than the honest chain. Even if this is accomplished,
it does not throw the system open to arbitrary changes, such as creating value out
of thin air or taking money that never belonged to the attacker. Nodes are not
going to accept an invalid transaction as payment, and honest nodes will never
accept a block containing them.”

“…proof-of-work difficulty is determined by a moving average targeting an average
number of blocks per hour.”

• Implementation detail: A moving average is not used. Instead, every 2,016th•
block has its reported generation time compared to the generation time for an
earlier block, and the difference between them is used to calculate the average
used for adjustment.
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Further, the average implemented in Bitcoin targets an average number of blocks
per two weeks (not per hour as might be implied by the text). Other implemented
rules may further slow adjustments, such as a rule that the adjustment cannot
increase block production speed by more than 300% per period, nor slow it by
more than 75%.

Reclaiming Disk Space
“Once the latest transaction in a coin is buried under enough blocks, the spent transac‐
tions before it can be discarded to save disk space.”

• Possible post-publication discovery: Although the merkle tree structure•
described in this section can prove a transaction was included in a particular
block, there is currently no way in Bitcoin to prove that a transaction has not
been spent except to process all subsequent data in the blockchain. This means
the method described here cannot be universally used for reclaiming disk space
among all nodes, as all new nodes will need to process all transactions.

Simplified Payment Verification
“One strategy to protect against this would be to accept alerts from network nodes
when they detect an invalid block, prompting the user’s software to download the full
block and alerted transactions to confirm the inconsistency.”

• Important Note: Although software has been produced that implements some•
parts of this section and calls that Simplified Payment Verification (SPV), none
of these programs currently accepts alerts from network nodes (full validation
nodes) when invalid blocks have been detected. This has placed bitcoins in
so-called SPV wallets at risk in the past.

Privacy
“Some linking is still unavoidable with multi-input transactions, which necessarily
reveal that their inputs were owned by the same owner.”

• Post-publication invention: It isn’t clear that different inputs in the same trans‐•
action have the same owner if owners often mix their inputs with inputs belong‐
ing to other owners. For example, there’s no public difference between Alice and
Bob each contributing one of their inputs toward paying Charlie and Dan than
there is between just Alice contributing two of her inputs toward paying Charlie
and Dan.
This technique is known today as CoinJoin, and software implementing it has
been in use since 2015.
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Calculations
“The receiver generates a new key pair and gives the public key to the sender shortly
before signing. This prevents the sender from preparing a chain of blocks ahead of
time by working on it continuously until he is lucky enough to get far enough ahead,
then executing the transaction at that moment.”

• Post-publication discovery: Nothing about the receiver generating a public key•
shortly before the spender signs a transaction prevents the spender from prepar‐
ing a chain of blocks ahead of time. Early Bitcoin user Hal Finney discovered this
attack and described it: “Suppose the attacker is generating blocks occasionally.
In each block he generates, he includes a transfer from address A to address B,
both of which he controls.
“To cheat you, when he generates a block, he doesn’t broadcast it. Instead, he
runs down to your store and makes a payment to your address C with his address
A. You wait a few seconds, don’t hear anything, and transfer the goods. He
broadcasts his block now, and his transaction will take precedence over yours.”
The attack works for any number of confirmations, and is sometimes named the
Finney Attack.

Disclaimer: The author of this document was not the first person to identify any of
the problems described here—he has merely collected them into a single document.

License: This errata document is released under the CC0 1.0 Universal Public
Domain Dedication

For updates made after the publication of this book, please see the Original docu‐
ment.
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APPENDIX C

Bitcoin Improvement Proposals

Bitcoin Improvement Proposals are design documents providing information to the
Bitcoin community or describing a new feature for Bitcoin or its processes or envi‐
ronment.

As per BIP1 BIP Purpose and Guidelines, there are three kinds of BIPs:

Standard BIP
Describes any change that affects most or all Bitcoin implementations, such as a
change to the network protocol, a change in block or transaction validity rules,
or any change or addition that affects the interoperability of applications using
Bitcoin.

Informational BIP
Describes a Bitcoin design issue or provides general guidelines or information
to the Bitcoin community, but does not propose a new feature. Informational
BIPs do not necessarily represent a Bitcoin community consensus or recommen‐
dation, so users and implementors may ignore informational BIPs or follow their
advice.

Process BIP
Describes a Bitcoin process or proposes a change to (or an event in) a process.
Process BIPs are like standard BIPs but apply to areas other than the Bitcoin
protocol itself. They might propose an implementation but not to Bitcoin’s
codebase; they often require community consensus. Unlike informational BIPs,
they are more than recommendations, and users are typically not free to ignore
them. Examples include procedures, guidelines, changes to the decision-making
process, and changes to the tools or environment used in Bitcoin development.
Any meta-BIP is also considered a process BIP.
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BIPs are recorded in a versioned repository on GitHub. An MIT-licensed document
from the open source Bitcoin Core project, reproduced here in edited form, describes
which BIPs it implements, including listing the Pull Request (PR) and version of
Bitcoin Core where support for each BIP was added or significantly changed.

BIPs that are implemented by Bitcoin Core:

• BIP9: The changes allowing multiple soft forks to be deployed in parallel have•
been implemented since v0.12.1 (PR #7575).

• BIP11: Multisig outputs are standard since v0.6.0 (PR #669).•
• BIP13: The address format for P2SH addresses has been implemented since•

v0.6.0 (PR #669).
• BIP14: The subversion string is being used as User Agent since v0.6.0 (PR #669).•
• BIP16: The pay-to-script-hash evaluation rules have been implemented since•

v0.6.0, and took effect on April 1st 2012 (PR #748).
• BIP21: The URI format for Bitcoin payments has been implemented since v0.6.0•

(PR #176).
• BIP22: The getblocktemplate (GBT) RPC protocol for mining has been imple‐•

mented since v0.7.0 (PR #936).
• BIP23: Some extensions to GBT have been implemented since v0.10.0rc1, includ‐•

ing longpolling and block proposals (PR #1816).
• BIP30: The evaluation rules to forbid creating new transactions with the same•

txid as previous not-fully-spent transactions were implemented since v0.6.0, and
the rule took effect on March 15th 2012 (PR #915).

• BIP31: The pong protocol message (and the protocol version bump to 60001) has•
been implemented since v0.6.1 (PR #1081).

• BIP32: Hierarchical Deterministic Wallets has been implemented since v0.13.0•
(PR #8035).

• BIP34: The rule that requires blocks to contain their height (number) in the•
coinbase input, and the introduction of version 2 blocks has been implemented
since v0.7.0. The rule took effect for version 2 blocks as of block 224413 (March
5th 2013), and version 1 blocks are no longer allowed since block 227931 (March
25th 2013) (PR #1526).

• BIP35: The mempool protocol message (and the protocol version bump to 60002)•
has been implemented since v0.7.0 (PR #1641). As of v0.13.0, this is only avail‐
able for NODE_BLOOM (BIP111) peers.
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• BIP37: The bloom filtering for transaction relaying, partial Merkle trees for•
blocks, and the protocol version bump to 70001 (enabling low-bandwidth light‐
weight clients) has been implemented since v0.8.0 (PR #1795). Disabled by
default since v0.19.0, can be enabled by the -peerbloomfilters option.

• BIP42: The bug that would have caused the subsidy schedule to resume after•
block 13440000 was fixed in v0.9.2 (PR #3842).

• BIP43: The experimental descriptor wallets introduced in v0.21.0 by default•
use the Hierarchical Deterministic Wallet derivation proposed by BIP43 (PR
#16528).

• BIP44: The experimental descriptor wallets introduced in v0.21.0 by default•
use the Hierarchical Deterministic Wallet derivation proposed by BIP44 (PR
#16528).

• BIP49: The experimental descriptor wallets introduced in v0.21.0 by default•
use the Hierarchical Deterministic Wallet derivation proposed by BIP49 (PR
#16528).

• BIP61: The reject protocol message (and the protocol version bump to 70002)•
was added in v0.9.0 (PR #3185). Starting v0.17.0, whether to send reject messages
can be configured with the -enablebip61 option, and support is deprecated
(disabled by default) as of v0.18.0. Support was removed in v0.20.0 (PR #15437).

• BIP65: The CHECKLOCKTIMEVERIFY soft fork was merged in v0.12.0 (PR #6351),•
and backported to v0.11.2 and v0.10.4. Mempool-only CLTV was added in PR
#6124.

• BIP66: The strict DER rules and associated version 3 blocks have been imple‐•
mented since v0.10.0 (PR #5713).

• BIP68: Sequence locks have been implemented as of v0.12.1 (PR #7184), and have•
been buried since v0.19.0 (PR #16060).

• BIP70 71 72: Payment Protocol support has been available in Bitcoin Core GUI•
since v0.9.0 (PR #5216). Support can be optionally disabled at build time since
v0.18.0 (PR 14451), and it is disabled by default at build time since v0.19.0 (PR
#15584). It has been removed as of v0.20.0 (PR 17165).

• BIP84: The experimental descriptor wallets introduced in v0.21.0 by default•
use the Hierarchical Deterministic Wallet derivation proposed by BIP84. (PR
#16528)

• BIP86: Descriptor wallets by default use the Hierarchical Deterministic Wallet•
derivation proposed by BIP86 since v23.0 (PR #22364).

• BIP90: Trigger mechanism for activation of BIPs 34, 65, and 66 has been simpli‐•
fied to block height checks since v0.14.0 (PR #8391).
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• BIP111: NODE_BLOOM service bit added and enforced for all peer versions as of•
v0.13.0 (PR #6579 and PR #6641).

• BIP112: The CHECKSEQUENCEVERIFY opcode has been implemented since v0.12.1•
(PR #7524), and has been buried since v0.19.0 (PR #16060).

• BIP113: Median time past lock-time calculations have been implemented since•
v0.12.1 (PR #6566), and has been buried since v0.19.0 (PR #16060).

• BIP125: Opt-in full replace-by-fee signaling partially implemented.•
• BIP130: direct headers announcement is negotiated with peer versions ≥70012 as•

of v0.12.0 (PR 6494).
• BIP133: feefilter messages are respected and sent for peer versions ≥70013 as of•

v0.13.0 (PR 7542).
• BIP141: Segregated Witness (Consensus Layer) as of v0.13.0 (PR 8149), defined•

for mainnet as of v0.13.1 (PR 8937), and buried since v0.19.0 (PR #16060).
• BIP143: Transaction Signature Verification for Version 0 Witness Program as of•

v0.13.0 (PR 8149), defined for mainnet as of v0.13.1 (PR 8937), and buried since
v0.19.0 (PR #16060).

• BIP144: Segregated Witness as of 0.13.0 (PR 8149).•
• BIP145: getblocktemplate updates for Segregated Witness as of v0.13.0 (PR 8149).•
• BIP147: NULLDUMMY soft fork as of v0.13.1 (PR 8636 and PR 8937), buried since•

v0.19.0 (PR #16060).
• BIP152: Compact block transfer and related optimizations are used as of v0.13.0•

(PR 8068).
• BIP155: The addrv2 and sendaddrv2 messages which enable relay of Tor V3•

addresses (and other networks) are supported as of v0.21.0 (PR 19954).
• BIP157 158: Compact Block Filters for Light Clients can be indexed as of v0.19.0•

(PR #14121) and served to peers on the P2P network as of v0.21.0 (PR #16442).
• BIP159: The NODE_NETWORK_LIMITED service bit is signalled as of v0.16.0 (PR•

11740), and such nodes are connected to as of v0.17.0 (PR 10387).
• BIP173: Bech32 addresses for native Segregated Witness outputs are supported•

as of v0.16.0 (PR 11167). Bech32 addresses are generated by default as of v0.20.0
(PR 16884).

• BIP174: RPCs to operate on Partially Signed Bitcoin Transactions (PSBT) are•
present as of v0.17.0 (PR 13557).

• BIP176: Bits Denomination [QT only] is supported as of v0.16.0 (PR 12035).•
• BIP325: Signet test network is supported as of v0.21.0 (PR 18267).•
• BIP339: Relay of transactions by wtxid is supported as of v0.21.0 (PR 18044).•
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• BIP340 341 342: Validation rules for Taproot (including Schnorr signatures and•
Tapscript leaves) are implemented as of v0.21.0 (PR 19953), with mainnet activa‐
tion as of v0.21.1 (PR 21377, PR 21686).

• BIP350: Addresses for native v1+ segregated Witness outputs use bech32m•
instead of bech32 as of v22.0 (PR 20861).

• BIP371: Taproot fields for PSBT as of v24.0 (PR 22558).•
• BIP380 381 382 383 384 385: Output Script Descriptors, and most of Script•

Expressions are implemented as of v0.17.0 (PR 13697).
• BIP386: tr() Output Script Descriptors are implemented as of v22.0 (PR 22051).•
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